Physics, Books a la Carte Edition (5th Edition)
5th Edition
ISBN: 9780134020853
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 7CQ
Is the normal force exerted by the ground the same for all four tires on your car? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
250 kg concrete wheel with a radius of 1.50 m is being pulled up a hill by a 725 kg cow, with a rope attached to the wheel and the cow. There is a 35.5 cm tall rock protruding out of the hill.
Calculate the tension in the rope when the wheel is just starting to lift off of the hill to go over the protruding rock? What's the minimum coefficient of static friction between the cow and the hill for the cow to be able to pull the wheel over the rock?
A car traveling on a flat (unbanked), circular track accelerates uniformly from rest with a tangential acceleration of 1.75 m/s. The car makes it one quarter of the way around the circle before it skids
off the track. From these data, determine the coefficient of static friction between the car and track.
0.56
You appear to have forgotten that the static force of friction is also responsible for the tangential acceleration of the car.
A car traveling on a flat (unbanked), circular track accelerates uniformly from rest with a tangential acceleration of 1.75 m/s. The car makes it one quarter of the way around the circle before it skids
off the track. From these data, determine the coefficient of static friction between the car and track.
0.057
You are not given a value of the radius of the track. Think through the problem using the symbol R for this value and see if a value is needed for the final solution.
Chapter 11 Solutions
Physics, Books a la Carte Edition (5th Edition)
Ch. 11.1 - A bicycle wheel is mounted on an axle, as shown in...Ch. 11.2 - Consider two objects with the following...Ch. 11.3 - A Physics sign is supported symmetrically by two...Ch. 11.4 - A mobile made from three piggy banks (A, B, C) is...Ch. 11.5 - Prob. 5EYUCh. 11.6 - Consider two objects with the following...Ch. 11.7 - Prob. 7EYUCh. 11.8 - In system 1, a torque of 20 N m acts through an...Ch. 11.9 - The angular velocity of the spinning bicycle wheel...Ch. 11 - Two forces produce the same torque. Does it follow...
Ch. 11 - A car pitches down in front when the brakes are...Ch. 11 - A tightrope walker uses a long pole to aid in...Ch. 11 - When a motorcycle accelerates rapidly from a stop...Ch. 11 - Give an example of a system in which the net...Ch. 11 - Give an example of a system in which the net force...Ch. 11 - Is the normal force exerted by the ground the same...Ch. 11 - Give two everyday examples of objects that are not...Ch. 11 - Give two everyday examples of objects that are in...Ch. 11 - Can an object have zero translational acceleration...Ch. 11 - Stars form when a large rotating cloud of gas...Ch. 11 - What purpose does the tail rotor on a helicopter...Ch. 11 - Is it possible to change the angular momentum of...Ch. 11 - Suppose a diver springs into the air with no...Ch. 11 - To tighten a spark plug, it is recommended that a...Ch. 11 - Pulling a Weed The gardening tool shown in Figure...Ch. 11 - A person slowly lowers a 3.6-kg crab trap over the...Ch. 11 - A squirrel-proof bird feeder has a lever that...Ch. 11 - At one position during its cycle, the foot pushes...Ch. 11 - BIO Predict/Calculate Force to Hold a Baseball A...Ch. 11 - At the local playground, a 21-kg child sits on the...Ch. 11 - Predict/Explain Consider the pulley-block systems...Ch. 11 - Suppose a torque rotates your body about one of...Ch. 11 - A torque of 0.97 N m is applied to a bicycle...Ch. 11 - When a ceiling fan rotating with an angular speed...Ch. 11 - When the play button is pressed, a CD accelerates...Ch. 11 - A person holds a ladder horizontally at its...Ch. 11 - A 0.180-kg wooden rod is 1.25 m long and pivots at...Ch. 11 - Predict/Calculate A wheel on a game show is given...Ch. 11 - The L-shaped object in Figure 11-41 consists of...Ch. 11 - The L-shaped object described in the previous...Ch. 11 - A motorcycle accelerates from rest, and both the...Ch. 11 - Predict/Calculate A torque of 13 N m is applied...Ch. 11 - Predict/Explain Suppose the person in Example...Ch. 11 - A string that passes over a pulley has a 0.321-kg...Ch. 11 - To loosen the lid on a jar of jam 7.6 cm in...Ch. 11 - BIO Predict/Calculate Referring to the person...Ch. 11 - Prob. 24PCECh. 11 - Prob. 25PCECh. 11 - Predict/Calculate A schoolyard teeter-totter with...Ch. 11 - A 0.122-kg remote control 23.0 cm long rests on a...Ch. 11 - Predict/Calculate A 0.16-kg meterstick is held...Ch. 11 - Prob. 29PCECh. 11 - A uniform metal rod, with a mass of 2.0 kg and a...Ch. 11 - Prob. 31PCECh. 11 - In Figure 11-46 two acrobats perform a balancing...Ch. 11 - BIO Forces in the Foot In Figure 11-47 we see the...Ch. 11 - A stick with a mass of 0.214 kg and a length of...Ch. 11 - Prob. 35PCECh. 11 - If the cat in Example 11-9 has a mass of 3.9 kg,...Ch. 11 - Prob. 37PCECh. 11 - Maximum Overhang Three identical, uniform books of...Ch. 11 - A baseball bat balances 71.1 cm from one end. If a...Ch. 11 - A 2.85-kg bucket is attached to a rope wrapped...Ch. 11 - A child exerts a tangential 53 4-N force on the...Ch. 11 - Predict/Calculate You pull downward with a force...Ch. 11 - One elevator arrangement includes the passenger...Ch. 11 - Atwood's Machine An Atwoods machine consists of...Ch. 11 - A 1.4-kg bicycle tire with a radius of 33 cm...Ch. 11 - Jogger 1 in Figure 11-51 has a mass of 65.3 kg and...Ch. 11 - Predict/Calculate Suppose jogger 3 in Figure 11-51...Ch. 11 - A torque of 0.12 N m is applied to an egg beater...Ch. 11 - A windmill has an initial angular momentum of 8500...Ch. 11 - Two gerbils run in place with a linear speed of...Ch. 11 - Predict/Explain A student rotates on a...Ch. 11 - A puck on a horizontal, frictionless surface is...Ch. 11 - A puck on a horizontal, frictionless surface is...Ch. 11 - As an ice skater begins a spin, his angular speed...Ch. 11 - A disk-shaped merry-go-round of radius 2.63 m and...Ch. 11 - A student sits at rest on a piano stool that can...Ch. 11 - Predict/Calculate A turntable with a moment of...Ch. 11 - A student on a piano stool rotates freely with an...Ch. 11 - Walking on a Merry-Go-Round A child of mass m...Ch. 11 - Predict/Explain Two spheres of equal mass and...Ch. 11 - Turning a doorknob through 0.25 of a revolution...Ch. 11 - A person exerts a tangential force of 36.1 N on...Ch. 11 - To prepare homemade ice cream a crank must be...Ch. 11 - Power of a Dental Drill A popular make of dental...Ch. 11 - For a home repair job you must turn the handle of...Ch. 11 - The L-shaped object in Figure 11-40 consists of...Ch. 11 - The rectangular object in Figure 11-41 consists of...Ch. 11 - Predict/Calculate A circular saw blade accelerates...Ch. 11 - CE A uniform disk stands upright on its edge, and...Ch. 11 - CE Consider the two rotating systems shown in...Ch. 11 - CE Predict/Explain A disk and a hoop (bicycle...Ch. 11 - CE A beetle sits at the nm of a turntable that is...Ch. 11 - After getting a drink of water a hamster jumps...Ch. 11 - A 47.0-kg uniform rod 4.25 m long is attached to a...Ch. 11 - Prob. 75GPCh. 11 - BIO The Masseter Muscle The masseter muscle, the...Ch. 11 - Exercising the Biceps You are designing exercise...Ch. 11 - Prob. 78GPCh. 11 - In Example 11-11, suppose the ladder is uniform,...Ch. 11 - When you arrive at Dukes Dude Ranch you are...Ch. 11 - Prob. 81GPCh. 11 - Flats Versus Heels A woman might wear a pair of...Ch. 11 - BIO A young girl sits at the edge of a dock by the...Ch. 11 - BIO Deltoid Muscle A crossing guard holds a STOP...Ch. 11 - BIO Triceps To determine the force a persons...Ch. 11 - Predict/Calculate Suppose partial melting of the...Ch. 11 - A bicycle wheel of radius R and mass M is at rest...Ch. 11 - A 0.101-kg yo-yo has an outer radius R that is...Ch. 11 - BIO Peak Pedaling Torque The downward force...Ch. 11 - A cylinder of mass m and radius r has a string...Ch. 11 - Bricks in Equilibrium Consider a system of four...Ch. 11 - BIO Correcting Torsiversion Torsiversion is a...Ch. 11 - BIO Correcting Torsiversion Torsiversion is a...Ch. 11 - BIO Correcting Torsiversion Torsiversion is a...Ch. 11 - BIO Correcting Torsiversion Torsiversion is a...Ch. 11 - Referring to Example 11-14 Suppose the mass of the...Ch. 11 - Prob. 97PPCh. 11 - Referring to Quick Example 11-22 Suppose the child...Ch. 11 - Referring to Quick Example 11-22 Suppose...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Which culture produces the most lactic acid? Use the following choices to answer questions. a. E. coli growing ...
Microbiology: An Introduction
Compare each of the mechanisms listed here with the mechanism for each of the two parts of the acid-catalyzed h...
Organic Chemistry (8th Edition)
WHAT IF? Consider two species that diverged while geographically separated but resumed contact before reproduc...
Campbell Biology (11th Edition)
The distances you obtained in Question 3 are for only one side of the ridge. Assuming that a ridge spreads equa...
Applications and Investigations in Earth Science (9th Edition)
What are the two types of bone marrow, and what are their functions?
Human Anatomy & Physiology (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A car traveling on a flat (unbanked), circular track accelerates uniformly from rest with a tangential acceleration of 1.70 m/s2. The car makes it one-quarter of the way around the circle before it skids off the track. From these data, determine the coefficient of static friction between the car and the track.arrow_forwardArtificial gravity is produced in a space station by rotating it, so it is a noninertial reference frame. The rotation means that there must be a centripetal force exerted on the occupants: this centripetal force is exerted by the walls of the station. The space station in Arthur C. Clarkes 2001: A Space Odyssey is in the shape of a four-spoked wheel with a diameter of 155 m. If the space station rotates at a rate of 2.40 revolutions per minute, what is the magnitude of the artificial gravitational acceleration provided to a space tourist walking on the inner wall of the station?arrow_forwardConsider an object on a rotating disk a distance r from its center, held in place on the disk by static friction. Which of the following statements is not true concerning this object? (a) If the angular speed is constant, the object must have constant tangential speed. (b) If the angular speed is constant, the object is not accelerated. (c) The object has a tangential acceleration only if the disk has an angular acceleration. (d) If the disk has an angular acceleration, the object has both a centripetal acceleration and a tangential acceleration. (e) The object always has a centripetal acceleration except when the angular speed is zero.arrow_forward
- BIO The arm in Figure P10.35 weighs 41.5 N. The gravitational force on the arm acts through point A. Determine the magnitudes of the tension force F1 in the deltoid muscle and the force Fs exerted by the shoulder on the humerus (upper-arm bone) to hold the arm in the position shown. Figure P10.35arrow_forwardConstruct Your Own Problem Consider an amusement park ride in which participants are rotated about a vertical axis in a cylinder with vertical walls. Once the angular velocity reaches its full value, the floor drops away and friction between the walls and the riders prevents them from sliding down. Construct a problem in which you calculate the necessary angular velocity that assures the riders will not slide down the wall. Include a free body diagram of a single rider. Among the variables to consider are the radius of the cylinder and the coefficients of friction between the riders' clothing and the wall.arrow_forwardHarry sets some clay (m = 3.25 kg) on the edge of a pottery wheel (r = 0.600 m), which is initially motionless. He then begins to rotate the wheel with a uniform acceleration, reaching a final angular speed of 2.400 rev/s in 3.00 s, while not touching the clay. As a result, the clay is subject to a tangential and centripetal acceleration while it sits on the edge of the wheel. a. What force is responsible for the tangential acceleration, and what force is responsible for the centripetal acceleration? b. Which of these two forces, tangential or centripetal, will necessarily fail to keep the clay in place on the wheel first? Why?arrow_forward
- Course dashboard: Q. A large vertical cylinder spins about its axis fast enough that any person inside is held up against the wall when drops away from the floor. The coefficient of static friction between person and the wall is u, = 0.35, and the radius of cylinder r = 2m. What is the maximum (linear) speed necessary to keep person from falling? (g = 9.80) B 7.48 m/s 5.50 m/s 3.28 m/s 9.80 m/s 11.48 m/s Lütfen birini seçin O A O B OD aya yazın EP F9 F5 F6 F7 F8 F10 F11 F12arrow_forwardOn the ride "Spindletop" at the amusement park Six Flags Over Texas, people stood against the inner wall of a hollow cylinder with radius 2.9 m and axis vertical. The cylinder started to rotate, and when it reached a constant rotation rate of 0.59 rev/s, the floor on which the people were standing dropped about 0.61 m. The people remained pinned against the wall. What minimum coefficient of static friction is required if a person on the ride is not to slide downward to the new position of the floor?arrow_forwardA pick up truck has a box sitting loose and it’s bed. The box has a mass of 2.5 kg in the coefficient of static friction between the box in the pick up bed is 0.8. The mass of the truck is 3150 kg and its tires have a coefficient of static friction with the road of 0.9. The truck is currently going through around about with the radius of 30 m. How fast can the truck go and not have the box slide on the truck bed?please answer in meters per second second.arrow_forward
- I nee help with this physics problemarrow_forward18. A car traveling on a flat (unbanked) circular track accelerates uniformly from rest with a tangential acceleration of 1.70-m/s. The car makes it one fourth of the way around the circle before it skids off the track. Determine the coefficient of static friction between the car and the track. Hint: you need to find the total acceleration of the car. Answer: 0.572arrow_forward9) What? This problem again? Not exactly. A block with mass m 1 = 3.00 kg sits on a horizontal table and is attached to a rope. The rope then passes over a MASSIVE pulley this time and is attached to a block of mass m 2 = 2.00 kg, which hangs vertically (see picture). The coefficient of kinetic friction of the interface between the table and m 1 is 0.1 . You may assume the pulley section is a disk with a mass of 2 kg. We will keep the pulley frictionless for brevity. Find the acceleration of the blocks using your choice of either Newton’s Laws or the energy conservation method. Yes, I can actually read your minds from here; and the answer is no, you do not need the radius of the pulleyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License