College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 86RPP
To determine
The distance at which a person should stand away from a speaker to avoid listening to the music, when the intensity of the sound is 1 m away from the speaker is
a. About 3 m away.
b. About 30 m away.
c. About 3 km away.
d. It depends on the size of the speaker.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
No chatgpt pls will upvote
Asap
A satellite has a mass of 100kg and is located at 2.00 x 10^6 m above the surface of the earth. a) What is the potential energy associated with the satellite at this loction? b) What is the magnitude of the gravitational force on the satellite?
No chatgpt pls will upvote
Chapter 11 Solutions
College Physics
Ch. 11 - How do you produce a longitudinal wave on a...Ch. 11 - Compare and contrast the speed of a vibrating...Ch. 11 - Prob. 3RQCh. 11 - Prob. 4RQCh. 11 - Why is it impossible to create a traveling wave on...Ch. 11 - Your friend says that it is impossible for two...Ch. 11 - Is the following sentence true? When two...Ch. 11 - One end of a horizontal string of length L passes...Ch. 11 - When we studied traveling waves, we decided that...Ch. 11 - An ambulance siren blares continuously as the...
Ch. 11 - What does it mean if the speed of a wave is 300 m...Ch. 11 - 2. What does it mean if the wavelength of a wave...Ch. 11 - 3. If you wish to represent one period of a wave...Ch. 11 - 4. If you wish to graph the disturbance pattern of...Ch. 11 - Which mathematical expression represents a...Ch. 11 - Prob. 6MCQCh. 11 - Prob. 7MCQCh. 11 - 8. Figure Q11.8 shows the...Ch. 11 - Prob. 9MCQCh. 11 - Prob. 10CQCh. 11 - 11. Figure Q11.11 shows a snapshot of two pulses...Ch. 11 - 12. Can a wave have a period of 2.0 s, a speed of...Ch. 11 - 13. What physics ideas were necessary to construct...Ch. 11 - 14. How do you know that the wavelength of a wave...Ch. 11 - What conditions are necessary to create a...Ch. 11 - Invent and describe an experiment to estimate the...Ch. 11 - Prob. 17CQCh. 11 - 18. Describe two useful types of information a...Ch. 11 - 19. Two speakers hang from racks placed in an open...Ch. 11 - Two identical sound waves are sent down a long...Ch. 11 - Sound waves of all frequencies in the audio...Ch. 11 - How can you show that an object producing sound...Ch. 11 - Describe the common features and differences...Ch. 11 - 24. Why do different guitar strings sound...Ch. 11 - Assume that the speed of sound in air is 340 m/s...Ch. 11 - Assume that the speed of sound in air is 340 m/s...Ch. 11 - Assume that the speed of sound in air is 340 m/s...Ch. 11 - Assume that the speed of sound in air is 340 m/s...Ch. 11 - Assume that the speed of sound in air is 340 m/s...Ch. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - Prob. 8PCh. 11 - Prob. 9PCh. 11 - Assume that the speed of sound in air is 340 m/s...Ch. 11 - Assume that the speed of sound in air is 340 m/s...Ch. 11 - Assume that the speed of sound in air is 340 m/s...Ch. 11 - Prob. 14PCh. 11 - Telephone line A telephone lineman is told to...Ch. 11 - 16. * A pulse travels at speed v on a stretched...Ch. 11 - 17. A 0.62-kg Slinky has 185 coils. When you and...Ch. 11 - =100g/m and the middle section is made from rope...Ch. 11 - Show using a sketch and mathematics that the...Ch. 11 - Show using a sketch and mathematics that the...Ch. 11 - 22. * You are standing at position A and your...Ch. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - Prob. 26PCh. 11 - 27. Sound wave in Earth A sound wave created by an...Ch. 11 - A 5.0-kg rope that is 20 m long is woven to an...Ch. 11 - Prob. 29PCh. 11 - Repeat the previous problem for the case where the...Ch. 11 - Prob. 31PCh. 11 - 32. Two waves shown in Figure P11.32 at zero...Ch. 11 - Prob. 33PCh. 11 - 34. * Use Huygens' principle and a wave front...Ch. 11 - Prob. 35PCh. 11 - 36. * You have two synchronously vibrating objects...Ch. 11 - Design Describe an experiment to convince a friend...Ch. 11 - 38. The energy of a sound wave is proportional to...Ch. 11 - Prob. 39PCh. 11 - * Supersonic jet The sound intensity 5 km from the...Ch. 11 - * You are in an open field investigating how sound...Ch. 11 - One loudspeaker is producing a tone of frequency...Ch. 11 - 43. * Tovi is playing a flute and Dawn is playing...Ch. 11 - Music in music a very soft sound called...Ch. 11 - 45. Two sounds differ by 1 dB. What is the...Ch. 11 - 46. Calculate the change in intensity level when a...Ch. 11 - Prob. 47PCh. 11 - 48. Banjo fret How far from the end of the banjo...Ch. 11 - * Violin string A 0.33-m-long violin string has a...Ch. 11 - A person secures a 5.0-m-long rope of mass 0.40 kg...Ch. 11 - 51. * Laura and Elana are discussing how to solve...Ch. 11 - Prob. 52PCh. 11 - * Ratio reasoning By what percent does the...Ch. 11 - Prob. 54PCh. 11 - 55. * Brooklyn-Battery Tunnel The 2779-m...Ch. 11 - * Flute A wooden flute, open at both ends, is 0.48...Ch. 11 - Organ pipe The lowest three standing wave...Ch. 11 - The speed of sound can be measured using the...Ch. 11 - Prob. 59PCh. 11 - 60. * A rope of length L is attached to a...Ch. 11 - 61. * A 3.0-m-long rope with a mass of 100 g is...Ch. 11 - * A 1.2-m-long open-closed pipe is producing sound...Ch. 11 - * Figure P11.63 shows the spectrum of sound that...Ch. 11 - Prob. 64PCh. 11 - * See the spectrum in Figure P11.63. (a) Can this...Ch. 11 - Car horn A car horn vibrates at a frequency of 250...Ch. 11 - Train whistle A car drives at a speed of 25 m/s...Ch. 11 - 68. * BIO Speed of blood A source of ultrasound...Ch. 11 - 69. * Circular motion sound source A whistle with...Ch. 11 - BIO Bat echo A bat emits short pulses of sound at...Ch. 11 - 105 Hz emits sound waves and detects the same...Ch. 11 - * Violin strings The speed of a wave on a violin A...Ch. 11 - 73. * Use Huygens' principle and a wave front...Ch. 11 - Prob. 74GPCh. 11 - Prob. 75GPCh. 11 - s teammate shouts at her to catch a ball. Estimate...Ch. 11 - 77. ** EST While camping, you record a thunderclap...Ch. 11 - 78. ** BIO Blood speed A red blood cell travels at...Ch. 11 - Prob. 80RPPCh. 11 - 81. If the car from Problem 11.80 is moving at 20...Ch. 11 - 82. Which answer below is closest to the distance...Ch. 11 - Compare your answers to Problems 11.80 and 11.82....Ch. 11 - While your car from Problem 11.80 is stationary,...Ch. 11 - Prob. 85RPPCh. 11 - Prob. 86RPPCh. 11 - 87. What amplifies the air pressure in the ear?
a....Ch. 11 - Where is the mechanism that allows the ear to...Ch. 11 - Prob. 89RPPCh. 11 - The threshold for pressure variation of a barely...
Knowledge Booster
Similar questions
- Correct answer No chatgpt pls will upvotearrow_forwardStatistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.arrow_forwardLab-Based Section Use the following information to answer the lab based scenario. A student performed an experiment in an attempt to determine the index of refraction of glass. The student used a laser and a protractor to measure a variety of angles of incidence and refraction through a semi-circular glass prism. The design of the experiment and the student's results are shown below. Angle of Incidence (°) Angle of Refraction (º) 20 11 30 19 40 26 50 31 60 36 70 38 2a) By hand (i.e., without using computer software), create a linear graph on graph paper using the student's data. Note: You will have to manipulate the data in order to achieve a linear function. 2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your answer to the nearest hundredth.arrow_forward
- Use the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardNo chatgpt pls will upvotearrow_forward
- A beam of alpha-particles of energy 7.3MeV is used.The protons emitted at an angle of zero degree are found to have energy of 9.34MeV.Find the Q-value of this reaction .arrow_forwardAn aluminum rod and a copper rod have the same length of 100cm at 5C. At what temperatures would one of the rods be 0.5 mm longer than the other? Which rod is longer at such temperature?arrow_forwardROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20arrow_forward
- Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forwardSECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forwardPage 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning