Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
4th Edition
ISBN: 9780134110646
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 82EAP
A two-stage rocket is traveling at 1200 m/s with respect to the earth when the first stage runs out of fuel. Explosive bolts release the first stage and push it backward with a speed of 35 m/s relative to the second stage. The first stage is three times as massive as the second stage. What is the speed of the second stage after the separation?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How much fuel would be needed for a 1000-kg rocket (this is its mass with no fuel) to take off from Earth and reach 1000 m/s in 30 s? The exhaust speed is 1000 m/s.
A man walks up to you and hands you an energy drink with mass 0.4 kg. You decide energy drinks
aren't for you and throw it on the ground. At the moment the energy drink leaves your hand, it is
moving downwards with a speed of 7 m/s and is 1 meter above the ground.
Calculate the speed of the energy drink in m/s just before it impacts the ground. As before, assume
g = 10 m/s^2. You may neglect air friction. Round your answer to one decimal place.
A capsule (mass=8 x102 kg) and booster
(mass = 3 x103 kg) are traveling at 1.8 x103
m/s when separation occurs. After the
separation, the booster has a speed of 1.8
x102 m/s. What is the speed for the capsule
after separation?
Give your answer in m/s to the correct
number of significant figures.
Chapter 11 Solutions
Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
Ch. 11 - Prob. 1CQCh. 11 - Prob. 2CQCh. 11 - \A 2 kg object is moving to the right with a speed...Ch. 11 - Prob. 4CQCh. 11 - Prob. 5CQCh. 11 - Angie, Brad, and Carlos are discussing a physics...Ch. 11 - Prob. 7CQCh. 11 - Automobiles are designed with “crumple zones”...Ch. 11 - A golf club continues forward after hitting the...Ch. 11 - Suppose a rubber ball collides head-on with a more...
Ch. 11 - Two particles collide, one of which was initially...Ch. 11 - Two ice skaters, Paula and Ricardo, push off from...Ch. 11 - Prob. 13CQCh. 11 - At what speed do a bicycle and its rider, with a...Ch. 11 - What is the magnitude of the momentum of A 3000 kg...Ch. 11 - What impulse does the force shown in FIGURE EX11.3...Ch. 11 - What is the impulse on a 3.0 kg particle that...Ch. 11 - Prob. 5EAPCh. 11 - Prob. 6EAPCh. 11 - Prob. 7EAPCh. 11 - Prob. 8EAPCh. 11 - Prob. 9EAPCh. 11 - A sled slides along a horizontal surface on which...Ch. 11 - Prob. 11EAPCh. 11 - A g air-track glider collides with a spring at one...Ch. 11 - A 250 g ball collides with a wall. FIGURE EX11.13...Ch. 11 - A 5000 kg open train car is rolling on...Ch. 11 - Prob. 15EAPCh. 11 - Prob. 16EAPCh. 11 - Three identical train cars, coupled together, are...Ch. 11 - A 300 g bird flying along at 6.0 m/s sees a 10 g...Ch. 11 - Prob. 19EAPCh. 11 - A 1500 kg car is rolling at 2.0 m/s. You would...Ch. 11 - Prob. 21EAPCh. 11 - A 50 g marble moving at 2.0 m/s strikes a 20 g...Ch. 11 - A proton is traveling to the right at 2.0 × 107...Ch. 11 - Prob. 24EAPCh. 11 - Prob. 25EAPCh. 11 - Prob. 26EAPCh. 11 - Prob. 27EAPCh. 11 - Prob. 28EAPCh. 11 - Prob. 29EAPCh. 11 - Prob. 30EAPCh. 11 - Two particles collide and bounce apart. FIGURE...Ch. 11 - An object at rest explodes into three fragments....Ch. 11 - A 20 g ball of clay traveling east at 3.0 m/s...Ch. 11 - 34. At the center of a 50-m-diameter circular ice...Ch. 11 - A small rocket with 15 kN thrust burns 250 kg of...Ch. 11 - A rocket in deep space has an empty mass of 150 kg...Ch. 11 - A rocket in deep space has an exhaust-gas speed of...Ch. 11 - A tennis player swings her 1000 g racket with a...Ch. 11 - A 60 g tennis ball with an initial speed of 32 m/s...Ch. 11 - A 500 g cart is released from rest 1.00 m from the...Ch. 11 - A 200 g ball is dropped from a height of 2.0 m,...Ch. 11 - The flowers of the bunchberry plant open with...Ch. 11 - A particle of mass in is at rest at t = 0. Its...Ch. 11 - Air-track gliders with masses 300 g, 400 g, and...Ch. 11 - Most geologists believe that the dinosaurs became...Ch. 11 - Squids rely on jet propulsion to move around. A...Ch. 11 - A firecracker in a coconut blows the coconut into...Ch. 11 - One billiard ball is shot east at 2.0 m/s. A...Ch. 11 - a. A bullet of mass m is fired into a block of...Ch. 11 - Prob. 50EAPCh. 11 - An object at rest on a flat, horizontal surface...Ch. 11 - A 1500 kg weather rocket accelerates upward at 10...Ch. 11 - Prob. 53EAPCh. 11 - Two 5 g blocks of wood are 2.0 m apart on a...Ch. 11 - A 100 g granite cube slides down a 40°...Ch. 11 - You have been asked to design a “ballistic spring...Ch. 11 - In FIGUREP11.57, a block of mass m slides along a...Ch. 11 - The stoplight had just changed and a 2000 kg...Ch. 11 - Prob. 59EAPCh. 11 - Force Fx= (10 N) sin (2pt/4.0 s) is exerted on a...Ch. 11 - A 500 g particle has velocity vx=5.0 m/s at t = 2...Ch. 11 - 30 ton rail car and a 90 ton rail car, initially...Ch. 11 - Prob. 63EAPCh. 11 - Prob. 64EAPCh. 11 - Prob. 65EAPCh. 11 - Old naval ships fired 10 kg cannon balls from a...Ch. 11 - A proton (mass 1 u) is shot toward an unknown...Ch. 11 - The nucleus of the polonium isotope 214Po (mass...Ch. 11 - Prob. 69EAPCh. 11 - A 20 g ball of clay traveling east at 2.0 m/s...Ch. 11 - Prob. 71EAPCh. 11 - Prob. 72EAPCh. 11 - Prob. 73EAPCh. 11 - a. To understand why rockets often have multiple...Ch. 11 - Prob. 75EAPCh. 11 - Prob. 76EAPCh. 11 - Prob. 77EAPCh. 11 - In Problems 75 through 78 you are given the...Ch. 11 - A 1000 kg cart is rolling to the right at 5.0 m/s....Ch. 11 - Prob. 80EAPCh. 11 - Prob. 81EAPCh. 11 - A two-stage rocket is traveling at 1200 m/s with...Ch. 11 - 83. The air-track carts in FIGURE P11.83 are...Ch. 11 - Section 11.6 found an equation for vmaxof a rocket...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- To lift off from the Moon, a 9.50 105 kg rocket needs a thrust larger than the force of gravity. If the exhaust velocity is 4.25 103 m/s, at what rate does the exhaust need to be expelled to provide sufficient thrust? The acceleration due to gravity on the Moon is 1.62 m/s2.arrow_forwardA single-stage rocket of mass 308 metric tons (not including fuel) carries a payload of 3150 kg to low-Earth orbit. The exhaust speed of the rockets cryogenic propellant is 3.20 103 m/s. a. If the speed of the rocket as it enters orbit is 8.00 km/s, what is the mass of propellant used during the rockets burn? b. The rocket is redesigned to boost its exhaust speed by a factor of two. What is the mass of propellant used in the redesigned rocket to carry the same payload to low-Earth orbit? c. Because the exhaust speed of the redesigned rocket is increased by a factor of two, why is the fuel consumption of the redesigned rocket not exactly half that of the original rocket?arrow_forwardA rocket has total mass Mi = 360 kg, including Mfuel = 330 kg of fuel and oxidizer. In interstellar space, it starts from rest at the position x = 0, turns on its engine at time t = 0, and puts out exhaust with relative speed ve = 1 500 m/s at the constant rate k = 2.50 kg/s. The fuel will last for a burn time of Tb = Mfuel/k = 330 kg/(2.5 kg/s) = 132 s. (a) Show that during the burn the velocity of the rocket as a function of time is given by v(t)=veln(1ktMi) (b) Make a graph of the velocity of the rocket as a function of time for times running from 0 to 132 s. (c) Show that the acceleration of the rocket is a(t)=kveMikt (d) Graph the acceleration as a function of time. (c) Show that the position of the rocket is x(t)=ve(Mikt)ln(1ktMi)+vet (f) Graph the position during the burn as a function of time.arrow_forward
- From what might be a possible scene in the comic book The X-Men, the Juggernaut (mJ) is charging into Colossus (mC) and the two collide. The initial speed of the Juggernaut is vJi and the initial speed of Colossus is vCi. After the collision, the final speed of the Juggernaut is vJf and the final speed of Colossus is vCf as they each bounce off of the other, heading in opposite directions. a. What is the impulse experienced by the Juggernaut? b. What is the impulse experienced by Colossus? c. In your own words, explain how these impulses must compare with each other and how they are related to the average force each superhero experiences during the collision.arrow_forwardTwo identical particles, each of mass 1 000 kg, are coasting in free space along the same path, one in front of the other by 20.0 m. At the instant their separation distance has this value, each particle has precisely the same velocity of 800 m/s. What are their precise velocities when they are 2.00 m apart? Figure P13 74arrow_forwardA hockey puck of mass 150 g is sliding due east on a frictionless table with a speed of 10 m/s. Suddenly, a constant force of magnitude 5 N and direction due north is applied to the puck for 1.5 s. Find the north and east components of the momentum at the end of the 1.3-s interval.arrow_forward
- An object, with mass 88 kg and speed 18 m/s relative to an observer, explodes into two pieces, one 4 times as massive as the other; the explosion takes place in deep space. The less massive piece stops relative to the observer. How much kinetic energy is added to the system during the explosion, as measured in the observer's reference frame?arrow_forwardThe mass of particle 1 is 11kg and the mass of particle 2 is 15kg. The initial velocity for particle 1 is (-104m/s)i + (216m/s)j and the initial velocity of particle 2 is (75m/s)i + (-152m/s)j.arrow_forward4. A rocket accelerates by burning its onboard fuel, so that its mass decreases with time.Suppose that the initial mass of the rocket at liftoff (including its fuel) is m, the fuel isconsumed at rate r, and the exhaust gases are ejected with constant velocity ν (relativeto the rocket). A model for the velocity of the rocket at time t is given by the equationv(t) = −ν ln(1 −Rt) −gt,where g is the acceleration due to gravity, R = r/m, and t is not too large.(a) Find an expression for the acceleration, a(t) = v′(t), of the rocket at any time t.(b) Find an expression for the position of the height, h(t), of the rocket at any timet. You can assume that at t = 0, the rocket hasn’t left the ground. Hint: re-member that ν,R,g are all constants and t is the independent variable.Write out your steps carefully!(c) Let g = 9.8 m/s2, R = 0.005 s−1. What does the velocity of the exhaust gases,ν, need to be for the rocket to reach a height of 6000 m one minute after liftoff?You can round to the…arrow_forward
- A spaceship at rest relative to a nearby star in interplanetary space has a total mass of 2.60 x 10 kg. Its engines fire at t-0, steadily burning fuel at 76.6 ka/s with an exhaust speed of 5.00 x 10 m/s. Calculate the spaceship's acceleration at t- 0, mass at t= 115 s, acceleration at t= 115 s, and speed at t= 115 s, relative to the same nearby star. HINT (a) acceleration at t-0 (Enter the magnitude. Enter your answer in m/s.) m/s? (b) mass at t - 115 s (Enter your answer in kg.) kg (c) acceleration at t 115 s (Enter the magnitude. Enter your answer in m/s.) m/s? (d) speed at t 115 s (Enter your answer in m/s.) m/s Need Help? Read Watch iarrow_forwardAn atomic nucleus at rest decays radioactively into an alpha particle and a different nucleus. What will be the speed of this recoiling nucleus if the speed of the alpha particle is 4.4×105 m/s? Assume the recoiling nucleus has a mass 57 times greater than that of the alpha particle.arrow_forwardSolve it correctly please. I will rate accordingly.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY