Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
4th Edition
ISBN: 9780134110646
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 39EAP
A 60 g tennis ball with an initial speed of 32 m/s hits a wall and rebounds with the same speed. FIGURE P11.39 shows the force of the wall on the ball during the collision.
FIGURE P11.39
What is the value of Fmax, the maximum value of the contact force during the collision?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
Ch. 11 - Prob. 1CQCh. 11 - Prob. 2CQCh. 11 - \A 2 kg object is moving to the right with a speed...Ch. 11 - Prob. 4CQCh. 11 - Prob. 5CQCh. 11 - Angie, Brad, and Carlos are discussing a physics...Ch. 11 - Prob. 7CQCh. 11 - Automobiles are designed with “crumple zones”...Ch. 11 - A golf club continues forward after hitting the...Ch. 11 - Suppose a rubber ball collides head-on with a more...
Ch. 11 - Two particles collide, one of which was initially...Ch. 11 - Two ice skaters, Paula and Ricardo, push off from...Ch. 11 - Prob. 13CQCh. 11 - At what speed do a bicycle and its rider, with a...Ch. 11 - What is the magnitude of the momentum of A 3000 kg...Ch. 11 - What impulse does the force shown in FIGURE EX11.3...Ch. 11 - What is the impulse on a 3.0 kg particle that...Ch. 11 - Prob. 5EAPCh. 11 - Prob. 6EAPCh. 11 - Prob. 7EAPCh. 11 - Prob. 8EAPCh. 11 - Prob. 9EAPCh. 11 - A sled slides along a horizontal surface on which...Ch. 11 - Prob. 11EAPCh. 11 - A g air-track glider collides with a spring at one...Ch. 11 - A 250 g ball collides with a wall. FIGURE EX11.13...Ch. 11 - A 5000 kg open train car is rolling on...Ch. 11 - Prob. 15EAPCh. 11 - Prob. 16EAPCh. 11 - Three identical train cars, coupled together, are...Ch. 11 - A 300 g bird flying along at 6.0 m/s sees a 10 g...Ch. 11 - Prob. 19EAPCh. 11 - A 1500 kg car is rolling at 2.0 m/s. You would...Ch. 11 - Prob. 21EAPCh. 11 - A 50 g marble moving at 2.0 m/s strikes a 20 g...Ch. 11 - A proton is traveling to the right at 2.0 × 107...Ch. 11 - Prob. 24EAPCh. 11 - Prob. 25EAPCh. 11 - Prob. 26EAPCh. 11 - Prob. 27EAPCh. 11 - Prob. 28EAPCh. 11 - Prob. 29EAPCh. 11 - Prob. 30EAPCh. 11 - Two particles collide and bounce apart. FIGURE...Ch. 11 - An object at rest explodes into three fragments....Ch. 11 - A 20 g ball of clay traveling east at 3.0 m/s...Ch. 11 - 34. At the center of a 50-m-diameter circular ice...Ch. 11 - A small rocket with 15 kN thrust burns 250 kg of...Ch. 11 - A rocket in deep space has an empty mass of 150 kg...Ch. 11 - A rocket in deep space has an exhaust-gas speed of...Ch. 11 - A tennis player swings her 1000 g racket with a...Ch. 11 - A 60 g tennis ball with an initial speed of 32 m/s...Ch. 11 - A 500 g cart is released from rest 1.00 m from the...Ch. 11 - A 200 g ball is dropped from a height of 2.0 m,...Ch. 11 - The flowers of the bunchberry plant open with...Ch. 11 - A particle of mass in is at rest at t = 0. Its...Ch. 11 - Air-track gliders with masses 300 g, 400 g, and...Ch. 11 - Most geologists believe that the dinosaurs became...Ch. 11 - Squids rely on jet propulsion to move around. A...Ch. 11 - A firecracker in a coconut blows the coconut into...Ch. 11 - One billiard ball is shot east at 2.0 m/s. A...Ch. 11 - a. A bullet of mass m is fired into a block of...Ch. 11 - Prob. 50EAPCh. 11 - An object at rest on a flat, horizontal surface...Ch. 11 - A 1500 kg weather rocket accelerates upward at 10...Ch. 11 - Prob. 53EAPCh. 11 - Two 5 g blocks of wood are 2.0 m apart on a...Ch. 11 - A 100 g granite cube slides down a 40°...Ch. 11 - You have been asked to design a “ballistic spring...Ch. 11 - In FIGUREP11.57, a block of mass m slides along a...Ch. 11 - The stoplight had just changed and a 2000 kg...Ch. 11 - Prob. 59EAPCh. 11 - Force Fx= (10 N) sin (2pt/4.0 s) is exerted on a...Ch. 11 - A 500 g particle has velocity vx=5.0 m/s at t = 2...Ch. 11 - 30 ton rail car and a 90 ton rail car, initially...Ch. 11 - Prob. 63EAPCh. 11 - Prob. 64EAPCh. 11 - Prob. 65EAPCh. 11 - Old naval ships fired 10 kg cannon balls from a...Ch. 11 - A proton (mass 1 u) is shot toward an unknown...Ch. 11 - The nucleus of the polonium isotope 214Po (mass...Ch. 11 - Prob. 69EAPCh. 11 - A 20 g ball of clay traveling east at 2.0 m/s...Ch. 11 - Prob. 71EAPCh. 11 - Prob. 72EAPCh. 11 - Prob. 73EAPCh. 11 - a. To understand why rockets often have multiple...Ch. 11 - Prob. 75EAPCh. 11 - Prob. 76EAPCh. 11 - Prob. 77EAPCh. 11 - In Problems 75 through 78 you are given the...Ch. 11 - A 1000 kg cart is rolling to the right at 5.0 m/s....Ch. 11 - Prob. 80EAPCh. 11 - Prob. 81EAPCh. 11 - A two-stage rocket is traveling at 1200 m/s with...Ch. 11 - 83. The air-track carts in FIGURE P11.83 are...Ch. 11 - Section 11.6 found an equation for vmaxof a rocket...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A car crashes into a large tree that does not move. The car goes from 30 m/s to 0 in 1.3 m. (a) What impulse is applied to the driver by the seatbelt, assuming he follows the same motion as the car? (b) What is the average force applied to the driver by the seatbelt?arrow_forwardIn a laboratory, a cart collides with a wall and bounces back. Figure P11.10 shows a graph of the force exerted by the wall versus time. a. Find the impulse exerted by the wall on the cart. b. What is the average force exerted by the wall on the cart? c. If the cart has a mass of 0.448 kg, what is its change in velocity? d. Make a sketch of the situation. Include a coordinate system and explain the significance of the signs in parts (a) through (c). FIGURE P11.10arrow_forwardSven hits a baseball (m = 0.15 kg). He applies an average force of 50.0 N. The ball had an initial velocity of 35.0 m/s to the right and a final velocity of 40.0 m/s to the left as viewed by a fan in the stands. a. What is the impulse delivered by Svens bat to the baseball? b. How long is his bat in contact with the ball?arrow_forward
- Initially, ball 1 rests on an incline of height h, and ball 2 rests on an incline of height h/2 as shown in Figure P11.40. They are released from rest simultaneously and collide in the trough of the track. If m2 = 4 m1 and the collision is elastic, find an expression for the velocity of each ball immediately after the collision. FIGURE P11.40 Problems 40 and 41.arrow_forwardA ball of mass 50.0 g is dropped from a height of 10.0 m. It rebounds after losing 75% of its kinetic energy during the collision process. If the collision with the ground took 0.010 s, find the magnitude of the impulse experienced by the ball.arrow_forwardTwo objects collide head-on (Fig. P11.39). The first object is moving with an initial speed of 8.00 m/s, and the second object is moving with an initial speed of 10.00 m/s. Assuming the collision is elastic, m1 = 5.15 kg, and m2 = 6.25 kg, determine the final velocity of each object. FIGURE P11.39arrow_forward
- An object of mass m = 4.00 kg that is moving with a speed of 10.0 m/s collides head-on with another object, and the collision lasts 1.50 s. A graph showing the magnitude of the force during the collision versus time is shown in Figure P11.59, where the force is exerted in the direction opposite the initial velocity. Find the speed of the 4.00-kg mass after collision. FIGURE P11.59arrow_forwardInitially, ball 1 rests on an incline of height h, and ball 2 rests on an incline of height h/2 as shown in Figure P11.40. They are released from rest simultaneously and collide elastically in the trough of the track. If m2 = 4 m1, m1 = 0.045 kg, and h = 0.65 m, what is the velocity of each ball after the collision?arrow_forwardA bullet of mass m is fired into a ballistic pendulum and embeds itself in the wooden bob of mass M (Fig. P11.33). After the collision, the pendulum reaches a maximum height h above its original position. a. Show that the kinetic energy of the system decreases by the factor m/(m + M) immediately after the collision. b. What is the change in momentum of the bullet-bob system due to the collision? FIGURE P11.33arrow_forward
- Two skateboarders, with masses m1 = 75.0 kg and m2 = 65.0 kg, simultaneously leave the opposite sides of a frictionless half-pipe at height h = 4.00 m as shown in Figure P11.49. Assume the skateboarders undergo a completely elastic head-on collision on the horizontal segment of the half-pipe. Treating the skateboarders as particles and assuming they dont fall off their skateboards, what is the height reached by each skateboarder after the collision? FIGURE P11.49arrow_forward(a) A 5.00-kg squid initially at rest ejects 0.250 kg of fluid with a velocity of 10.0 m/s. What is the recoil velocity of the squid if the ejection is done in 0.100 s and there is a 5.00-N frictional force opposing the squid’s movement? (b) How much energy is lost to work done against friction?arrow_forwardProblems 44 and 45 are paired. C A model rocket is shot straight up. As it reaches the highest point in its trajectory, it explodes in midair into three pieces with velocities indicated by the arrows in Figure P10.44, as viewed from directly above the explosion. Rank the mass of each piece in order from smallest to largest and justify your answer. FIGURE P10.44 Problems 44 and 45.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Impulse Derivation and Demonstration; Author: Flipping Physics;https://www.youtube.com/watch?v=9rwkTnTOB0s;License: Standard YouTube License, CC-BY