Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
4th Edition
ISBN: 9780134110646
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 38EAP
- A tennis player swings her 1000 g racket with a speed of 10 m/s. She hits a 60 g tennis ball that was approaching her at a speed of 20 m/s. The ball rebounds at 40 m/s.
- How fast is her racket moving immediately after the impact? You can ignore the interaction of the racket with her hand for the brief duration of the collision.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
Ch. 11 - Prob. 1CQCh. 11 - Prob. 2CQCh. 11 - \A 2 kg object is moving to the right with a speed...Ch. 11 - Prob. 4CQCh. 11 - Prob. 5CQCh. 11 - Angie, Brad, and Carlos are discussing a physics...Ch. 11 - Prob. 7CQCh. 11 - Automobiles are designed with “crumple zones”...Ch. 11 - A golf club continues forward after hitting the...Ch. 11 - Suppose a rubber ball collides head-on with a more...
Ch. 11 - Two particles collide, one of which was initially...Ch. 11 - Two ice skaters, Paula and Ricardo, push off from...Ch. 11 - Prob. 13CQCh. 11 - At what speed do a bicycle and its rider, with a...Ch. 11 - What is the magnitude of the momentum of A 3000 kg...Ch. 11 - What impulse does the force shown in FIGURE EX11.3...Ch. 11 - What is the impulse on a 3.0 kg particle that...Ch. 11 - Prob. 5EAPCh. 11 - Prob. 6EAPCh. 11 - Prob. 7EAPCh. 11 - Prob. 8EAPCh. 11 - Prob. 9EAPCh. 11 - A sled slides along a horizontal surface on which...Ch. 11 - Prob. 11EAPCh. 11 - A g air-track glider collides with a spring at one...Ch. 11 - A 250 g ball collides with a wall. FIGURE EX11.13...Ch. 11 - A 5000 kg open train car is rolling on...Ch. 11 - Prob. 15EAPCh. 11 - Prob. 16EAPCh. 11 - Three identical train cars, coupled together, are...Ch. 11 - A 300 g bird flying along at 6.0 m/s sees a 10 g...Ch. 11 - Prob. 19EAPCh. 11 - A 1500 kg car is rolling at 2.0 m/s. You would...Ch. 11 - Prob. 21EAPCh. 11 - A 50 g marble moving at 2.0 m/s strikes a 20 g...Ch. 11 - A proton is traveling to the right at 2.0 × 107...Ch. 11 - Prob. 24EAPCh. 11 - Prob. 25EAPCh. 11 - Prob. 26EAPCh. 11 - Prob. 27EAPCh. 11 - Prob. 28EAPCh. 11 - Prob. 29EAPCh. 11 - Prob. 30EAPCh. 11 - Two particles collide and bounce apart. FIGURE...Ch. 11 - An object at rest explodes into three fragments....Ch. 11 - A 20 g ball of clay traveling east at 3.0 m/s...Ch. 11 - 34. At the center of a 50-m-diameter circular ice...Ch. 11 - A small rocket with 15 kN thrust burns 250 kg of...Ch. 11 - A rocket in deep space has an empty mass of 150 kg...Ch. 11 - A rocket in deep space has an exhaust-gas speed of...Ch. 11 - A tennis player swings her 1000 g racket with a...Ch. 11 - A 60 g tennis ball with an initial speed of 32 m/s...Ch. 11 - A 500 g cart is released from rest 1.00 m from the...Ch. 11 - A 200 g ball is dropped from a height of 2.0 m,...Ch. 11 - The flowers of the bunchberry plant open with...Ch. 11 - A particle of mass in is at rest at t = 0. Its...Ch. 11 - Air-track gliders with masses 300 g, 400 g, and...Ch. 11 - Most geologists believe that the dinosaurs became...Ch. 11 - Squids rely on jet propulsion to move around. A...Ch. 11 - A firecracker in a coconut blows the coconut into...Ch. 11 - One billiard ball is shot east at 2.0 m/s. A...Ch. 11 - a. A bullet of mass m is fired into a block of...Ch. 11 - Prob. 50EAPCh. 11 - An object at rest on a flat, horizontal surface...Ch. 11 - A 1500 kg weather rocket accelerates upward at 10...Ch. 11 - Prob. 53EAPCh. 11 - Two 5 g blocks of wood are 2.0 m apart on a...Ch. 11 - A 100 g granite cube slides down a 40°...Ch. 11 - You have been asked to design a “ballistic spring...Ch. 11 - In FIGUREP11.57, a block of mass m slides along a...Ch. 11 - The stoplight had just changed and a 2000 kg...Ch. 11 - Prob. 59EAPCh. 11 - Force Fx= (10 N) sin (2pt/4.0 s) is exerted on a...Ch. 11 - A 500 g particle has velocity vx=5.0 m/s at t = 2...Ch. 11 - 30 ton rail car and a 90 ton rail car, initially...Ch. 11 - Prob. 63EAPCh. 11 - Prob. 64EAPCh. 11 - Prob. 65EAPCh. 11 - Old naval ships fired 10 kg cannon balls from a...Ch. 11 - A proton (mass 1 u) is shot toward an unknown...Ch. 11 - The nucleus of the polonium isotope 214Po (mass...Ch. 11 - Prob. 69EAPCh. 11 - A 20 g ball of clay traveling east at 2.0 m/s...Ch. 11 - Prob. 71EAPCh. 11 - Prob. 72EAPCh. 11 - Prob. 73EAPCh. 11 - a. To understand why rockets often have multiple...Ch. 11 - Prob. 75EAPCh. 11 - Prob. 76EAPCh. 11 - Prob. 77EAPCh. 11 - In Problems 75 through 78 you are given the...Ch. 11 - A 1000 kg cart is rolling to the right at 5.0 m/s....Ch. 11 - Prob. 80EAPCh. 11 - Prob. 81EAPCh. 11 - A two-stage rocket is traveling at 1200 m/s with...Ch. 11 - 83. The air-track carts in FIGURE P11.83 are...Ch. 11 - Section 11.6 found an equation for vmaxof a rocket...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Assume the pucks in Figure P11.66 stick together after theircollision at the origin. Puck 2 has four times the mass of puck 1 (m2 = 4m1). Initially, puck 1s speed is three times puck 2s speed (v1i = 3v2i), puck 1s position is r1i=x1ii, and puck 2s position is r2i=y2ij. a. Find an expression for their velocity after the collision in terms of puck 1s initial velocity. b. What is the fraction Kf/Ki that remains in the system?arrow_forwardSven hits a baseball (m = 0.15 kg). He applies an average force of 50.0 N. The ball had an initial velocity of 35.0 m/s to the right and a final velocity of 40.0 m/s to the left as viewed by a fan in the stands. a. What is the impulse delivered by Svens bat to the baseball? b. How long is his bat in contact with the ball?arrow_forwardInitially, ball 1 rests on an incline of height h, and ball 2 rests on an incline of height h/2 as shown in Figure P11.40. They are released from rest simultaneously and collide elastically in the trough of the track. If m2 = 4 m1, m1 = 0.045 kg, and h = 0.65 m, what is the velocity of each ball after the collision?arrow_forward
- A car crashes into a large tree that does not move. The car goes from 30 m/s to 0 in 1.3 m. (a) What impulse is applied to the driver by the seatbelt, assuming he follows the same motion as the car? (b) What is the average force applied to the driver by the seatbelt?arrow_forwardA 5-kg cart moving to the right with a speed of 6 m/s collides with a concrete wall and rebounds with a speed of 2 m/s. What is the change in momentum of the cart? (a) 0 (b) 40 kg m/s (c) 40 kg m/s (d) 30 kg m/s (e) 10 kg m/sarrow_forwardA small block of mass m1 = 0.500 kg is released from rest at the top of a frictionless, curve-shaped wedge of mass m2 = 3.00 kg, which sits on a frictionless, horizontal surface as shown in Figure P8.55a. When the block leaves the wedge, its velocity is measured to be 4.00 m/s to the right as shown in Figure P8.55b. (a) What is the velocity of the wedge after the block reaches the horizontal surface? (b) What is the height h of the wedge?arrow_forward
- Sand from a stationary hopper falls onto a moving conveyor belt at the rate of 5.00 kg/s as shown in Figure P8.64. The conveyor belt is supported by frictionless rollers and moves at a constant speed of v = 0.750 m/s under the action of a constant horizontal external force Fext supplied by the motor that drives the belt. Find (a) the sands rate of change of momentum in the horizontal direction, (b) the force of friction exerted by the belt on the sand, (c) the external force Fext, (d) the work done by Fext in 1 s, and (e) the kinetic energy acquired by the falling sand each second due to the change in its horizontal motion. (f) Why are the answers to parts (d) and (e) different? Figure P8.64arrow_forwardA ball of mass 50.0 g is dropped from a height of 10.0 m. It rebounds after losing 75% of its kinetic energy during the collision process. If the collision with the ground took 0.010 s, find the magnitude of the impulse experienced by the ball.arrow_forwardFrom what might be a possible scene in the comic book The X-Men, the Juggernaut (mJ) is charging into Colossus (mC) and the two collide. The initial speed of the Juggernaut is vJi and the initial speed of Colossus is vCi. After the collision, the final speed of the Juggernaut is vJf and the final speed of Colossus is vCf as they each bounce off of the other, heading in opposite directions. a. What is the impulse experienced by the Juggernaut? b. What is the impulse experienced by Colossus? c. In your own words, explain how these impulses must compare with each other and how they are related to the average force each superhero experiences during the collision.arrow_forward
- A soccer player runs up behind a 0.450-kg soccer ball traveling at 3.20 m/s and kicks it in the same direction as it is moving, increasing its speed to 12.8 m/s. (a) What is the change in the magnitude of the balls momentum? (b) What magnitude impulse did the soccer player deliver to the ball? (c) What magnitude impulse would be required to kick the ball in the opposite direction at 12.8 m/s, instead? (See Section 6.1.)arrow_forwardIn a laboratory, a cart collides with a wall and bounces back. Figure P11.10 shows a graph of the force exerted by the wall versus time. a. Find the impulse exerted by the wall on the cart. b. What is the average force exerted by the wall on the cart? c. If the cart has a mass of 0.448 kg, what is its change in velocity? d. Make a sketch of the situation. Include a coordinate system and explain the significance of the signs in parts (a) through (c). FIGURE P11.10arrow_forwardA 100-g firecracker is launched vertically into the air and explodes into two pieces at the peak of its trajectory. If a 72-g piece is projected horizontally to the left at 20 m/s, what is the speed and direction of the other piece?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY