![EBK PHYSICS FOR SCIENTISTS AND ENGINEER](https://www.bartleby.com/isbn_cover_images/9781319321710/9781319321710_largeCoverImage.gif)
Concept explainers
(a)
To Calculate:The value of constant
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 80P
Explanation of Solution
Given data:
The density of the sphere,
Radius,
Mass of the sphere,
Formula Used:
Mass = Density
Calculation:
The density of the sphere is
Here C is the constant and r is the distance.
The density of the sphere is varied by a distance so the differential element of the sphere is ,
Integrate within the limits 0 to R .
Therefore the constant C is,
Substitute
Conclusion:
The constant C is
(b)
The acceleration due to gravity for a distance
The gravitation field with in the region
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 80P
The acceleration due to gravity for a distance
The gravitation field with in the region
Explanation of Solution
Given data:
The density of the sphere,
Radius,
Mass of the sphere,
The constant C is
Formula used:
Gravitational field:
Here, G is the gravitational constant, M is the mass and r is the distance of the point from the center of the sphere.
Calculation:
The expression for the magnitude of gravitational field at a point outside
Substitute
Therefore, the acceleration due to gravity for a distance
The expression for the gravitational field at a point inside
Since the density of the sphere is varying with the distance, so gravitational field is given by for
Substitute
Conclusion:
The acceleration due to gravity for a distance
The gravitation field with in the region
Want to see more full solutions like this?
Chapter 11 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- You throw a small rock straight up from the edge of a highway bridge that crosses a river. The rock passes you on its way down, 5.00 s after it was thrown. What is the speed of the rock just before it reaches the water 25.0 m below the point where the rock left your hand? Ignore air resistance.arrow_forwardHelp me make a visualize experimental setup using a word document. For the theory below.arrow_forwardHow to solve this, given answerarrow_forward
- Three point-like charges are placed at the corners of a square as shown in the figure, 28.0 cm on each side. Find the minimum amount of work required by an external force to move the charge q1 to infinity. Let q1=-2.10 μC, q2=+2.40 μС, q3=+3.60 μC.arrow_forwardA point charge of -4.00 nC is at the origin, and a second point charge of 6.00 nC is on the x axis at x= 0.820 mm . Find the magnitude and direction of the electric field at each of the following points on the x axis. x2 = 19.0 cmarrow_forwardFour point-like charges are placed as shown in the figure, three of them are at the corners and one at the center of a square, 36.0 cm on each side. What is the electric potential at the empty corner? Let q1=q3=+26.0 µС, q2=-28.0 μC, and q4=-48.0μc Varrow_forward
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)