EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
6th Edition
ISBN: 9781319321710
Author: Mosca
Publisher: VST
bartleby

Concept explainers

Question
Book Icon
Chapter 11, Problem 57P

(a)

To determine

To Calculate:The orbital period of the space craft.

(a)

Expert Solution
Check Mark

Answer to Problem 57P

  7.3h

Explanation of Solution

Given data:

  G=6.67×1011 Nm2/kg2MEarth=5.98×1024kgREarth=6.37×106mh = 12.742×106 m

Mass of the spacecraft, m=100kg

Formula Used:

From Kepler’s third law, the square of the period T2 is directly proportional to the cube of the distance r .

  T2=4π2r3GME

Here, G is the universal gravitational constant and ME is the mass of the Earth.

Calculation:

The height of the spacecraft is

  h=2RE

Here, RE is the radius of the Earth.

Substitute 6.371×106m for RE

  h=2(6.371×106m)=12.742×106m

From Kepler’s third law, the square of the period T2 is directly proportional to the cube of the distance r .

  T2=4π2r3GME

Here, r=(RE+h) is the distance between the Earth and the space craft.

Substitute (RE+h) for r

  T2=4π2GME(RE+h)3

Thus, the expression for the period of the spacecraft’s orbit about the Earth is,

  T=4π2GME(RE+h)3

Substitute the values and solve:

  T=2(6.67×10-11N.m2/kg2)(5.98×1024kg)(6.371×106m+12.742×106m)3=2.63×104s(1h3600s)7.3h

Conclusion:

The orbital period of te space craft is 7.3h .

(b)

To determine

The kinetic energy of the spacecraft

(b)

Expert Solution
Check Mark

Answer to Problem 57P

  1.04GJ

Explanation of Solution

Given data:

  G=6.67×1011 Nm2/kg2MEarth=5.98×1024kgREarth=6.37×106mh = 12.742×106 m

Mass of the spacecraft, m=100kg

Formula used:

The kinetic energy of the spacecraft is

  K.E=12mv2

Here, v is the orbital speed of the space craft and m is the mass of the space craft.

The orbital velocity of the spacecraft is expressed as follows:

  v=GMERE+h

Calculation:

Substitute GMERE+h for v :

  K.E=12m(GMERE+h)2=GmME2(RE+h)

Substitute the values:

  K.E=(6.67×10-11N.m2/kg2)(100kg)(5.98×1024kg)2(6.371×106m+12.742×106m)

  =1.04×109J(1GJ109J)=1.04GJ

Conclusion:

The kinetic energy of the spacecraft is 1.04GJ.

(c)

To determine

The angular momentum of the spacecraft

(c)

Expert Solution
Check Mark

Answer to Problem 57P

  8.72×1012kgm2/s

Explanation of Solution

Given data:

  G=6.67×1011 Nm2/kg2MEarth=5.98×1024kgREarth=6.37×106mh = 12.742×106 m

Mass of the spacecraft, m=100kg

Formula used:

The moment of inertia of the space craft is I=m(RE+h)2 .

Calculation:

Substitute the values and solve:

  I=(100kg)(6.371×106m+12.742×106m)2=3.653×1016kg.m2

The angular momentum of the spacecraft in terms of kinetic energy is

  L=2(K.E)I

Substitute the values:

  L=2(1.04×109J)(3.653×1016kgm2)=8.72×1012kgm2/s

Conclusion:

The angular momentum of the spacecraft is 8.72×1012kgm2/s .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The triangular coil of wire in the drawing is free to rotate about an axis that is attached along side AC. The current in the loop is 4.64 A, and the magnetic field (parallel to the plane of the loop and side AB) is B = 2.1 T. (a) What is the magnetic moment of the loop, and (b) what is the magnitude of the net torque exerted on the loop by the magnetic field?
12 volt battery in your car supplies 1700 Joules of energy to run the headlights during a particular nighttime drive. How much charge must have flowed through the battery to provide this much energy? Give your answer as the number of Coulombs.
An x-y coordinate system is on the floor with a charge of +3.6 Coulombs at a location with coordinates x = -4.2 meters, y = 0 meters, and a charge of 1.2 Coulombs at a location with coordinates x = +7.5 meters, y = 0 meters.  What is the potential (voltage) due to these charges, at location x = 0 meters, y = 9.3 meters on the floor using volts?

Chapter 11 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Ch. 11 - Prob. 11PCh. 11 - Prob. 12PCh. 11 - Prob. 13PCh. 11 - Prob. 14PCh. 11 - Prob. 15PCh. 11 - Prob. 16PCh. 11 - Prob. 17PCh. 11 - Prob. 18PCh. 11 - Prob. 19PCh. 11 - Prob. 20PCh. 11 - Prob. 21PCh. 11 - Prob. 22PCh. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - Prob. 25PCh. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - Prob. 33PCh. 11 - Prob. 34PCh. 11 - Prob. 35PCh. 11 - Prob. 36PCh. 11 - Prob. 37PCh. 11 - Prob. 38PCh. 11 - Prob. 39PCh. 11 - Prob. 40PCh. 11 - Prob. 41PCh. 11 - Prob. 42PCh. 11 - Prob. 43PCh. 11 - Prob. 44PCh. 11 - Prob. 45PCh. 11 - Prob. 46PCh. 11 - Prob. 47PCh. 11 - Prob. 48PCh. 11 - Prob. 49PCh. 11 - Prob. 50PCh. 11 - Prob. 51PCh. 11 - Prob. 52PCh. 11 - Prob. 53PCh. 11 - Prob. 54PCh. 11 - Prob. 55PCh. 11 - Prob. 56PCh. 11 - Prob. 57PCh. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - Prob. 60PCh. 11 - Prob. 61PCh. 11 - Prob. 62PCh. 11 - Prob. 63PCh. 11 - Prob. 64PCh. 11 - Prob. 65PCh. 11 - Prob. 66PCh. 11 - Prob. 67PCh. 11 - Prob. 68PCh. 11 - Prob. 69PCh. 11 - Prob. 70PCh. 11 - Prob. 71PCh. 11 - Prob. 72PCh. 11 - Prob. 73PCh. 11 - Prob. 74PCh. 11 - Prob. 75PCh. 11 - Prob. 76PCh. 11 - Prob. 77PCh. 11 - Prob. 78PCh. 11 - Prob. 79PCh. 11 - Prob. 80PCh. 11 - Prob. 81PCh. 11 - Prob. 82PCh. 11 - Prob. 83PCh. 11 - Prob. 84PCh. 11 - Prob. 85PCh. 11 - Prob. 86PCh. 11 - Prob. 87PCh. 11 - Prob. 88PCh. 11 - Prob. 89PCh. 11 - Prob. 90PCh. 11 - Prob. 91PCh. 11 - Prob. 92PCh. 11 - Prob. 93PCh. 11 - Prob. 94PCh. 11 - Prob. 95PCh. 11 - Prob. 96PCh. 11 - Prob. 97PCh. 11 - Prob. 98PCh. 11 - Prob. 99PCh. 11 - Prob. 100PCh. 11 - Prob. 101PCh. 11 - Prob. 102PCh. 11 - Prob. 103PCh. 11 - Prob. 104PCh. 11 - Prob. 105PCh. 11 - Prob. 106PCh. 11 - Prob. 107P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning