EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
6th Edition
ISBN: 9781319321710
Author: Mosca
Publisher: VST
bartleby

Videos

Question
Book Icon
Chapter 11, Problem 103P

(a)

To determine

ToShow: That the potential energy shared by an element of the rod of mass dm and the point particle of mass m0 located at x0 12L is given by:

  dU=Gm0dmx0xsdU=GMm0L(x0xs)dxs

(a)

Expert Solution
Check Mark

Explanation of Solution

Given information :

Mass of point particle =m0

Formula used :

Gravitational potential energy

  U=Gmomr

U is gravitational potential energy, G is the gravitational constant, m is the mass of large body and m0 is the mass of the other body.

Calculation:

Let U = 0 at x =  .

The potential energy of an element of the stick dm and the point mass m0 is given by the definition of gravitational potential energy.

  U=Gmomr

Where r is the separation of dm and m0 .

  dU=Gm0dmx0xs

  dm=λdxo

  λ=ML

  dU=Gm0λdx0x0xsdU=GMm0dx0L(x0xs)

Conclusion:

The potential energy shared by an element of the rod of mass dm and the point particle of mass m0 located at x0 12L is given by:

  dU=Gm0dmx0xsdU=GMm0L(x0xs)dxs

(b)

To determine

ToIntegrate:The result had in part (a).

(b)

Expert Solution
Check Mark

Answer to Problem 103P

  U=GMm0Lln(x0+L/2x0L/2)

Explanation of Solution

Given information:

Mass of point particle =m0

Formula used:

Gravitational potential energy

  U=Gmomr

U is gravitational potential energy, G is the gravitational constant, m is the mass of large body and m0 is the mass of the other body.

Calculation:

Integrate dU to find the total potential energy of the system:

  U=GMm0LL/2L/2dxsx0xsU=GMm0L[ln(x0L2)ln(x0+L2)]U=GMm0Lln(x0+L/2x0L/2)

Conclusion:

The integration of dU=GMm0dxL(x0xs) is, U=GMm0Lln(x0+L/2x0L/2) .

(c)

To determine

To Calculate: The force on m0 at a general point x using Fx=dU/dx and compare the result with m0g .

(c)

Expert Solution
Check Mark

Answer to Problem 103P

  F(x0)=Gmm0x2L2/4

Explanation of Solution

Given information:

Mass of point particle =m0

Formula used:

Force on mass  m0

  F(x0)=dUdx0

Where, dU is the potential energy difference and dxo is the distance to mass  m0 .

Calculation:

  U=GMm0L[ln(x0L2)ln(x0+L2)]

Because x0 is a general point along the x axis:

  F(x0)=dUdx0F(x0)=GMm0L[1x0+L21x0L2]

  F(x0)=Gmm0xo2L2/4

This answer and the answer given in Example 11-8 are the same.

Conclusion:

The force on m0 at a general point x using Fx=dU/dx is, F(x0)=Gmm0x2L2/4 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
What is the error determined by the 2/3 rule?
Your colleague gives you a sample that are supposed to consist of Pt-Ni nanoparticles, TiO2 nanorod arrays, and SiO2 monolith plates (see right panel schematic). The bimetallic Pt-Ni nanoparticles are expected to decorate on the side surfaces of the aligned TiO2 nanorod arrays. These aligned TiO2 nanoarrays grew on the flat SiO2 monolith. Let's assume that the sizes of the Pt-Ni nanoparticles are > 10 nm. We further assume that you have access to a modern SEM that can produce a probe size as small as 1 nm with a current as high as 1 nA. You are not expected to damage/destroy the sample. Hint: keep your answers concise and to the point. TiO₂ Nanorods SiO, monolith a) What do you plan to do if your colleague wants to know if the Pt and Ni formed uniform alloy nanoparticles? (5 points) b) If your colleague wants to know the spatial distribution of the PtNi nanoparticles with respect to the TiO2 nanoarrays, how do you accomplish such a goal? (5 points) c) Based on the experimental results…
Find the current in 5.00 and 7.00 Ω resistors. Please explain all reasoning

Chapter 11 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Ch. 11 - Prob. 11PCh. 11 - Prob. 12PCh. 11 - Prob. 13PCh. 11 - Prob. 14PCh. 11 - Prob. 15PCh. 11 - Prob. 16PCh. 11 - Prob. 17PCh. 11 - Prob. 18PCh. 11 - Prob. 19PCh. 11 - Prob. 20PCh. 11 - Prob. 21PCh. 11 - Prob. 22PCh. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - Prob. 25PCh. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - Prob. 33PCh. 11 - Prob. 34PCh. 11 - Prob. 35PCh. 11 - Prob. 36PCh. 11 - Prob. 37PCh. 11 - Prob. 38PCh. 11 - Prob. 39PCh. 11 - Prob. 40PCh. 11 - Prob. 41PCh. 11 - Prob. 42PCh. 11 - Prob. 43PCh. 11 - Prob. 44PCh. 11 - Prob. 45PCh. 11 - Prob. 46PCh. 11 - Prob. 47PCh. 11 - Prob. 48PCh. 11 - Prob. 49PCh. 11 - Prob. 50PCh. 11 - Prob. 51PCh. 11 - Prob. 52PCh. 11 - Prob. 53PCh. 11 - Prob. 54PCh. 11 - Prob. 55PCh. 11 - Prob. 56PCh. 11 - Prob. 57PCh. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - Prob. 60PCh. 11 - Prob. 61PCh. 11 - Prob. 62PCh. 11 - Prob. 63PCh. 11 - Prob. 64PCh. 11 - Prob. 65PCh. 11 - Prob. 66PCh. 11 - Prob. 67PCh. 11 - Prob. 68PCh. 11 - Prob. 69PCh. 11 - Prob. 70PCh. 11 - Prob. 71PCh. 11 - Prob. 72PCh. 11 - Prob. 73PCh. 11 - Prob. 74PCh. 11 - Prob. 75PCh. 11 - Prob. 76PCh. 11 - Prob. 77PCh. 11 - Prob. 78PCh. 11 - Prob. 79PCh. 11 - Prob. 80PCh. 11 - Prob. 81PCh. 11 - Prob. 82PCh. 11 - Prob. 83PCh. 11 - Prob. 84PCh. 11 - Prob. 85PCh. 11 - Prob. 86PCh. 11 - Prob. 87PCh. 11 - Prob. 88PCh. 11 - Prob. 89PCh. 11 - Prob. 90PCh. 11 - Prob. 91PCh. 11 - Prob. 92PCh. 11 - Prob. 93PCh. 11 - Prob. 94PCh. 11 - Prob. 95PCh. 11 - Prob. 96PCh. 11 - Prob. 97PCh. 11 - Prob. 98PCh. 11 - Prob. 99PCh. 11 - Prob. 100PCh. 11 - Prob. 101PCh. 11 - Prob. 102PCh. 11 - Prob. 103PCh. 11 - Prob. 104PCh. 11 - Prob. 105PCh. 11 - Prob. 106PCh. 11 - Prob. 107P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Mechanical work done (GCSE Physics); Author: Dr de Bruin's Classroom;https://www.youtube.com/watch?v=OapgRhYDMvw;License: Standard YouTube License, CC-BY