EBK PHYSICS FOR SCIENTISTS AND ENGINEER
6th Edition
ISBN: 9781319321710
Author: Mosca
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 29P
(a)
To determine
To prove:
(b)
To determine
To find: The distance between the sun and the Venus.
(c)
To determine
To Find: The length of the Venusian year.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A saturn year is 29.5 times the ear
th year. How far is the saturn fro
m the sun if the earth is 1.50 ×
10km away from the sun?
(a) A reasonably accurate value for the AU is 1.50 × 101 m. If the year is a × 107 s,
(2)
(a good approximation, and one easy to remember) calculate Earth's speed in km/s assuming a
circular orbit about the Sun. (b) The experimental determination (first attempted by Cavendish in
1797/98) yields G = 6.67×10-11 N-m²/kg?. Calculate the mass of the Sun. (c) On the other hand,
when we measure distances in AU and speeds in km/s, the constant in the Vis-Viva Equation is
GM = 900. Explain why this is the case. (d) Once we know the distance to the Sun, using its
angular size one could determine that the radius of the Sun is approximately Rsun = 7 × 10* m.
Calculate the ratio of the Sun's density to that of water.
(a) Calculate Venus' mass given the acceleration due to gravity at the north pole is 8.865 m/s? and the radius of Venus at the pole is 6,052 km.
M.
calculated
| kg
(b) Compare this with the accepted value of 4.868 x 1024 kg.
calculated
M
аcсepted
Chapter 11 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 11 - Prob. 1PCh. 11 - Prob. 2PCh. 11 - Prob. 3PCh. 11 - Prob. 4PCh. 11 - Prob. 5PCh. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - Prob. 8PCh. 11 - Prob. 9PCh. 11 - Prob. 10P
Ch. 11 - Prob. 11PCh. 11 - Prob. 12PCh. 11 - Prob. 13PCh. 11 - Prob. 14PCh. 11 - Prob. 15PCh. 11 - Prob. 16PCh. 11 - Prob. 17PCh. 11 - Prob. 18PCh. 11 - Prob. 19PCh. 11 - Prob. 20PCh. 11 - Prob. 21PCh. 11 - Prob. 22PCh. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - Prob. 25PCh. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - Prob. 33PCh. 11 - Prob. 34PCh. 11 - Prob. 35PCh. 11 - Prob. 36PCh. 11 - Prob. 37PCh. 11 - Prob. 38PCh. 11 - Prob. 39PCh. 11 - Prob. 40PCh. 11 - Prob. 41PCh. 11 - Prob. 42PCh. 11 - Prob. 43PCh. 11 - Prob. 44PCh. 11 - Prob. 45PCh. 11 - Prob. 46PCh. 11 - Prob. 47PCh. 11 - Prob. 48PCh. 11 - Prob. 49PCh. 11 - Prob. 50PCh. 11 - Prob. 51PCh. 11 - Prob. 52PCh. 11 - Prob. 53PCh. 11 - Prob. 54PCh. 11 - Prob. 55PCh. 11 - Prob. 56PCh. 11 - Prob. 57PCh. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - Prob. 60PCh. 11 - Prob. 61PCh. 11 - Prob. 62PCh. 11 - Prob. 63PCh. 11 - Prob. 64PCh. 11 - Prob. 65PCh. 11 - Prob. 66PCh. 11 - Prob. 67PCh. 11 - Prob. 68PCh. 11 - Prob. 69PCh. 11 - Prob. 70PCh. 11 - Prob. 71PCh. 11 - Prob. 72PCh. 11 - Prob. 73PCh. 11 - Prob. 74PCh. 11 - Prob. 75PCh. 11 - Prob. 76PCh. 11 - Prob. 77PCh. 11 - Prob. 78PCh. 11 - Prob. 79PCh. 11 - Prob. 80PCh. 11 - Prob. 81PCh. 11 - Prob. 82PCh. 11 - Prob. 83PCh. 11 - Prob. 84PCh. 11 - Prob. 85PCh. 11 - Prob. 86PCh. 11 - Prob. 87PCh. 11 - Prob. 88PCh. 11 - Prob. 89PCh. 11 - Prob. 90PCh. 11 - Prob. 91PCh. 11 - Prob. 92PCh. 11 - Prob. 93PCh. 11 - Prob. 94PCh. 11 - Prob. 95PCh. 11 - Prob. 96PCh. 11 - Prob. 97PCh. 11 - Prob. 98PCh. 11 - Prob. 99PCh. 11 - Prob. 100PCh. 11 - Prob. 101PCh. 11 - Prob. 102PCh. 11 - Prob. 103PCh. 11 - Prob. 104PCh. 11 - Prob. 105PCh. 11 - Prob. 106PCh. 11 - Prob. 107P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Kepler’s third law says that the orbital period (in years) is proportional to the square root of the cube of the mean distance (in AU) from the Sun (Pa1.5) . For mean distances from 0.1 to 32 AU, calculate and plot a curve showing the expected Keplerian period. For each planet in our solar system, look up the mean distance from the Sun in AU and the orbital period in years and overplot these data on the theoretical Keplerian curve.arrow_forwardComet Halley (Fig. P11.21) approaches the Sun to within 0.570 AU, and its orbital period is 75.6 yr. (AU is the symbol for astronomical unit, where 1 AU = 1.50 1011 m is the mean EarthSun distance.) How far from the Sun will Halleys comet travel before it starts its return journey?arrow_forward(a) Calculate the orbital inclination required to place a Venus-orbiting spacecraft in a 400 km-by-900 km sun-synchronous orbit. (b) Determine the periapsis and apoapsis for a Mars-orbiting spacecraft whose orbit satisfies all the following conditions: it is sun-synchronous, its argument of perigee is constant, and its period is 7 h.arrow_forward
- Consider an imaginary planet in our solar system at an average distance of25 AU from the Sun.(a) Calculate the orbital period of this planet. (b) This fictional planet has an orbital eccentricity of e = 0.4, calculatethe planet’s distance to the Sun at aphelion and perihelion. (c) Another imaginary planet in our solar system has a perihelion distanceof 12 AU from the Sun and an aphelion distance of 68 AU. Is theeccentricity of this new planet greater or less than the planet in theprevious question?arrow_forward5arrow_forwardBased Figure 4-13c, do planets with larger a take longer, shorter, or the same time to orbit the Sun?arrow_forward
- Check Your Understanding The nearly circular orbit of Saturn has an average radius of about 9.5 AU and has a period of 30 years, whereas Uranus averages about 19 AU and has a period of 84 years. Is this consistent with our results for Halley’s comet?arrow_forwardWhen Sedna was discovered in 2003, it was the most distant object known to orbit the Sun. Currently, it is moving toward the inner solar system. Its period is 10,500 years. Its perihelion distance is 75 AU. a. What is its semimajor axis in astronomical units? b. What is its aphelion distance?arrow_forwardAccording to Lunar Laser Ranging experiments the average distance LM from the Earth to theMoon is approximately 3.85 × 105 km. The Moon orbits the Earth and completes one revolutionin approximately 27.5 days (a sidereal month). a) Calculate the orbital velocity of the Moon.b) Calculate mass of the Earth.arrow_forward
- The average Earth-Moon distance is 3.84 X 10^5 km, while the Earth-Sun is 1.496 X 10^8 km. Since the radius of the Moon is 1.74 X 10^3 km and that of the Sun is 6.96 X 10^5 km. a) Calculate the angular radius of the Moon and the Sun, qmax, according to the following figure. D Bax R b) Calculate the solid angle of the Moon and the Sun as seen from Earth. (c) Interpret its results; Would this be enough to explain the occurrence of total solar eclipses?arrow_forwardPluto’s orbit around the Sun is highly elliptical compared to the planets in our Solar System. It has a perihelion distance of 29.7 AU and an aphelion distance of 49.5 AU. a) What is the semi-major axis of Pluto’s orbit, in AU? b) What is Pluto’s orbital period, in Earth years?arrow_forwardIn the 19th century, measurements of the precession of the orbits of the planets in the solarsystem were performed, and preformed to a new standard of precision that allowedpredictions to be made from deviations from gravitational theory. Newtonian gravitationwas sufficient to predict the precession in most of the planets, but Mercury’s precession wasanomalous: the long axis of its elliptical orbit changes direction by 43”/century (arcsecondsper tropical century) faster than the expected speed. One theory that was created to explainthis effect was that there was an “anti-Earth” called Vulcan that orbited the sun exactlyopposite the Earth. 1 If this theory had been correct, how much different would the orbit of the Earth be fromwhat it is today? Express your answer in terms of the ratio of the difference of the predictedperiod of the Earth with and without Vulcan to the period of the Earth without thehypothetical planet. Some assumptions will be necessary to get a nice answer:(i) Do not…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY