Chemistry by OpenStax (2015-05-04)
1st Edition
ISBN: 9781938168390
Author: Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 71E
Identify the dispersed phase and the dispersion medium in each of the following colloidal systems: starch dispersion, smoke, fog, pearl, whipped cream, floating soap, jelly, milk, and ruby.
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 11 Solutions
Chemistry by OpenStax (2015-05-04)
Ch. 11 - How do solutions differ from compounds? From other...Ch. 11 - Which of the principal characteristics of...Ch. 11 - When KNO3 is dissolved in water, the resulting...Ch. 11 - Give an example of each of the following types of...Ch. 11 - Indicate the most important types of...Ch. 11 - Predict whether each of the following substances...Ch. 11 - Heat is released when some solutions form; heat is...Ch. 11 - Solutions of hydrogen in palladium may be formed...Ch. 11 - Explain why the ions Na+ and CI- are strongly...Ch. 11 - Explain why solutions of HBr in benzene (a...
Ch. 11 - Consider the solutions presented: (a) Which of the...Ch. 11 - Compare the processes that occur when methanol...Ch. 11 - What is the expected electrical conductivity of...Ch. 11 - Why are most solid ionic compounds electrically...Ch. 11 - Indicate the most important type of intermolecular...Ch. 11 - Suppose you are presented with a clear solution of...Ch. 11 - Supersaturated solutions of most solids in water...Ch. 11 - Suggest an explanation for the observations that...Ch. 11 - Calculate the percent by mass of KBr in a...Ch. 11 - Which of the following gases is expected to be...Ch. 11 - At 0 C and 1.00 atm, as much as 0.70 g of O2 can...Ch. 11 - Refer to Figure 11.11. (a) How did the...Ch. 11 - The Henry's law constant for CO2 is 3.4102 M/atm...Ch. 11 - The Henry's law constant for O2 is 1.3103M /atm at...Ch. 11 - How many liters of HCI gas, measured at 30.0 C and...Ch. 11 - Which is are part of the macroscopic domain of...Ch. 11 - What is the microscopic explanation for the...Ch. 11 - Sketch a qualitative graph of the pressure versus...Ch. 11 - A solution of potassium nitrate, an electrolyte,...Ch. 11 - What are the mole fractions of H3PO4 and water in...Ch. 11 - What are the mole fractions of HNO3 and water in a...Ch. 11 - Calculate the mole fraction of each solute and...Ch. 11 - Calculate the mole fraction of each solute and...Ch. 11 - Calculate the mole fractions of methanol, CH3OH;...Ch. 11 - What is the difference between a 1 M solution and...Ch. 11 - What is the molality of phosphoric acid, H3PO4, in...Ch. 11 - What is the molality of nitric acid in a...Ch. 11 - Calculate the molality of each of the following...Ch. 11 - Calculate the molality of each of the following...Ch. 11 - The concentration of glucose, C6H12O6, in normal...Ch. 11 - A 13.0% solution of K2CO3 by mass has a density of...Ch. 11 - Why does 1 mol of sodium chloride depress the...Ch. 11 - What is the boiling point of a solution of 115.0 g...Ch. 11 - What is the boiling point of a solution of 9.04 g...Ch. 11 - What is the freezing temperature of a solution of...Ch. 11 - What is the freezing point of a solution of 9.04 g...Ch. 11 - What is the osmotic pressure of an aqueous...Ch. 11 - What is osmotic pressure of a solution of bovine...Ch. 11 - What is the molar mass of a solution of 5.00 g of...Ch. 11 - A sample of an organic compound (a nonelectrolyte)...Ch. 11 - A 1.0 m solution of HCI in benzene has a freezing...Ch. 11 - A solution contains 5.00 g of urea, CO(NH2)2, a...Ch. 11 - A 12.0-g sample of a nonelectrolyte is dissolved...Ch. 11 - Arrange the following solutions in order by their...Ch. 11 - Calculate the boiling point elevation of 0.100 kg...Ch. 11 - How could you prepare a 3.08 m aqueous solution of...Ch. 11 - A sample of sulfur weighing 0.210 g was dissolved...Ch. 11 - In a significant experiment performed many years...Ch. 11 - Lysozyme is an enzyme that cleaves cell walls. A...Ch. 11 - The osmotic pressure of a solution containing 7.0...Ch. 11 - The osmotic pressure of human blood is 7.6 atm at...Ch. 11 - What is the freezing point of a solution of...Ch. 11 - What is the boiling point of a solution of NaCI in...Ch. 11 - The sugar fructose contains 40.0% C, 6.7% H, and...Ch. 11 - The vapor pressure of methanol, CH3OH, is 94 torr...Ch. 11 - The triple point of air-free water is defined as...Ch. 11 - Meat can be classified as fresh (not frozen) even...Ch. 11 - An organic compound has a composition of 93.46% C...Ch. 11 - A sample of HgCI2 weighing 9.41 g is dissolved in...Ch. 11 - A salt is known to be an alkali metal fluoride. A...Ch. 11 - Identify the dispersed phase and the dispersion...Ch. 11 - Distinguish between dispersion methods and...Ch. 11 - How do colloids differ from solutions with regard...Ch. 11 - Explain the cleansing action of soap.Ch. 11 - How can it be demonstrated that colloidal...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A ball is thrown straight up. It passes a 2.00-m-high window 7.50 m off the ground on its path up and takes 0.3...
College Physics
Predict how many electrons each element will most likely gain or lose. a. l b. Ba c. Cs d. Se
Introductory Chemistry (6th Edition)
An atom with a formal charge does not necessarily have more or less electron density than the atoms in the mole...
Essential Organic Chemistry (3rd Edition)
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties
The reaction of tert-butyl chloride with methanol (CH3)3CCl + CH3OH (CH3)3COCH3 + HCl tert butyl chloride met...
Organic Chemistry (9th Edition)
Knowledge Booster
Similar questions
- What would be the freezing point of a solution formed by adding 1.0 mole of glucose (a molecular compound) to the following amounts of water? a. 250 g (0.25 kg) b. 500 g (0.500 kg) c. 1000 g (1.000 kg) d. 2000 g (2.000 kg)arrow_forwardDistinguish between dispersion methods and condensation methods for preparing colloidal systems.arrow_forward6-111 As noted in Section 6-8C, the amount of external pressure that must be applied to a more concentrated solution to stop the passage of solvent molecules across a semipermeable membrane is known as the osmotic pressure The osmotic pressure obeys a law similar in form to the ideal gas law (discussed in Section 5-4), where Substituting for pressure and solving for osmotic pressures gives the following equation: RT MRT, where M is the concentration or molarity of the solution. (a) Determine the osmotic pressure at 25°C of a 0.0020 M sucrose (C12H22O11) solution. (b) Seawater contains 3.4 g of salts for every liter of solution. Assuming the solute consists entirely of NaCl (and complete dissociation of the NaCI salt), calculate the osmotic pressure of seawater at 25°C. (c) The average osmotic pressure of blood is 7.7 atm at 25°C. What concentration of glucose (C6H12O6) will be isotonic with blood? (d) Lysozyme is an enzyme that breaks bacterial cell walls. A solution containing 0.150 g of this enzyme in 210. mL of solution has an osmotic pressure of 0.953 torr at 25°C. What is the molar mass of lysozyme? (e) The osmotic pressure of an aqueous solution of a certain protein was measured in order to determine the protein's molar mass. The solution contained 3.50 mg of protein dissolved in sufficient water to form 5.00 mL of solution. The osmotic pressure of the solution at 25°C was found to be 1.54 torr. Calculate the molar mass of the protein.arrow_forward
- Consider two solutions, A and B, separated by an osmotic semipermeable membrane that allows only water to pass through, as shown in the following diagram. Based on each of the following identities for solutions A and B, indicate whether the liquid level in compartment A, with time, will increase, decrease, or not change. a. A = 1.0 M NaCl solution and B = 2.0 M NaCl solution b. A = 5.0%(m/v) glucose solution and B = 4.0%(m/v) glucose solution c. A = 2.0 M KCl solution and B = 2.0 M KNO3 solution d. A = 1.0 M glucose solution and B = 1.0 M NaCl solutionarrow_forwardHow many grams of glucose must be added to 275 g of water in order to prepare each of the following percent-by-mass concentrations of aqueous glucose solution? a. 1.30% b. 5.00% c. 20.0% d. 31.0%arrow_forwardConsider two solutions, A and B, separated by an osmotic semipermeable membrane that allows only water to pass through, as shown in the diagram in Problem 8-113. Based on each of the following identities for solutions A and B, indicate whether the liquid level in compartment A, with time, will increase, decrease, or not change. a. A = 1.0 M glucose solution and B = 2.0 M glucose solution b. A = 5.0%(m/v) NaCl solution and B = 4.0%(m/v) NaCl solution c. A = 2.0 M Na2SO4 solution and B = 3.0 M KNO3 solution d. A = 2.0 M glucose solution and B = 1.0 M NaCl solutionarrow_forward
- Methanol is a polar solvent and heptane is a nonpolar solvent. In which of these two solvents are each of the following solutes more likely to be soluble? a. KCl, ionic b. Rubbing alcohol, polar c. Gasoline, nonpolar d. NaNO3, ionicarrow_forwardVodka is advertised to be 80 proof. That means that the ethanol (C2H5OH) concentration is 40% (two significant figures) by volume. Assuming the density of the solution to be 1.0 g/mL, what is the freezing point of vodka? The density of ethanol is 0.789 g/mL.arrow_forwardWill red blood cells swell, remain the same size, or shrink when placed in each of the solutions in Problem 8-101? Classify each of the following solutions as hypotonic, isotonic, or hypertonic relative to red blood cells? a. 0.92%(m/v) glucose solution b. 0.92%(m/v) NaCl solution c. 2.3%(m/v) glucose solution d. 5.0%(m/v) NaCl solutionarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning