Chemistry by OpenStax (2015-05-04)
1st Edition
ISBN: 9781938168390
Author: Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 69E
A sample of HgCI2 weighing 9.41 g is dissolved in 32.75 g of ethanol, C2H5OH (
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Chemistry by OpenStax (2015-05-04)
Ch. 11 - How do solutions differ from compounds? From other...Ch. 11 - Which of the principal characteristics of...Ch. 11 - When KNO3 is dissolved in water, the resulting...Ch. 11 - Give an example of each of the following types of...Ch. 11 - Indicate the most important types of...Ch. 11 - Predict whether each of the following substances...Ch. 11 - Heat is released when some solutions form; heat is...Ch. 11 - Solutions of hydrogen in palladium may be formed...Ch. 11 - Explain why the ions Na+ and CI- are strongly...Ch. 11 - Explain why solutions of HBr in benzene (a...
Ch. 11 - Consider the solutions presented: (a) Which of the...Ch. 11 - Compare the processes that occur when methanol...Ch. 11 - What is the expected electrical conductivity of...Ch. 11 - Why are most solid ionic compounds electrically...Ch. 11 - Indicate the most important type of intermolecular...Ch. 11 - Suppose you are presented with a clear solution of...Ch. 11 - Supersaturated solutions of most solids in water...Ch. 11 - Suggest an explanation for the observations that...Ch. 11 - Calculate the percent by mass of KBr in a...Ch. 11 - Which of the following gases is expected to be...Ch. 11 - At 0 C and 1.00 atm, as much as 0.70 g of O2 can...Ch. 11 - Refer to Figure 11.11. (a) How did the...Ch. 11 - The Henry's law constant for CO2 is 3.4102 M/atm...Ch. 11 - The Henry's law constant for O2 is 1.3103M /atm at...Ch. 11 - How many liters of HCI gas, measured at 30.0 C and...Ch. 11 - Which is are part of the macroscopic domain of...Ch. 11 - What is the microscopic explanation for the...Ch. 11 - Sketch a qualitative graph of the pressure versus...Ch. 11 - A solution of potassium nitrate, an electrolyte,...Ch. 11 - What are the mole fractions of H3PO4 and water in...Ch. 11 - What are the mole fractions of HNO3 and water in a...Ch. 11 - Calculate the mole fraction of each solute and...Ch. 11 - Calculate the mole fraction of each solute and...Ch. 11 - Calculate the mole fractions of methanol, CH3OH;...Ch. 11 - What is the difference between a 1 M solution and...Ch. 11 - What is the molality of phosphoric acid, H3PO4, in...Ch. 11 - What is the molality of nitric acid in a...Ch. 11 - Calculate the molality of each of the following...Ch. 11 - Calculate the molality of each of the following...Ch. 11 - The concentration of glucose, C6H12O6, in normal...Ch. 11 - A 13.0% solution of K2CO3 by mass has a density of...Ch. 11 - Why does 1 mol of sodium chloride depress the...Ch. 11 - What is the boiling point of a solution of 115.0 g...Ch. 11 - What is the boiling point of a solution of 9.04 g...Ch. 11 - What is the freezing temperature of a solution of...Ch. 11 - What is the freezing point of a solution of 9.04 g...Ch. 11 - What is the osmotic pressure of an aqueous...Ch. 11 - What is osmotic pressure of a solution of bovine...Ch. 11 - What is the molar mass of a solution of 5.00 g of...Ch. 11 - A sample of an organic compound (a nonelectrolyte)...Ch. 11 - A 1.0 m solution of HCI in benzene has a freezing...Ch. 11 - A solution contains 5.00 g of urea, CO(NH2)2, a...Ch. 11 - A 12.0-g sample of a nonelectrolyte is dissolved...Ch. 11 - Arrange the following solutions in order by their...Ch. 11 - Calculate the boiling point elevation of 0.100 kg...Ch. 11 - How could you prepare a 3.08 m aqueous solution of...Ch. 11 - A sample of sulfur weighing 0.210 g was dissolved...Ch. 11 - In a significant experiment performed many years...Ch. 11 - Lysozyme is an enzyme that cleaves cell walls. A...Ch. 11 - The osmotic pressure of a solution containing 7.0...Ch. 11 - The osmotic pressure of human blood is 7.6 atm at...Ch. 11 - What is the freezing point of a solution of...Ch. 11 - What is the boiling point of a solution of NaCI in...Ch. 11 - The sugar fructose contains 40.0% C, 6.7% H, and...Ch. 11 - The vapor pressure of methanol, CH3OH, is 94 torr...Ch. 11 - The triple point of air-free water is defined as...Ch. 11 - Meat can be classified as fresh (not frozen) even...Ch. 11 - An organic compound has a composition of 93.46% C...Ch. 11 - A sample of HgCI2 weighing 9.41 g is dissolved in...Ch. 11 - A salt is known to be an alkali metal fluoride. A...Ch. 11 - Identify the dispersed phase and the dispersion...Ch. 11 - Distinguish between dispersion methods and...Ch. 11 - How do colloids differ from solutions with regard...Ch. 11 - Explain the cleansing action of soap.Ch. 11 - How can it be demonstrated that colloidal...
Additional Science Textbook Solutions
Find more solutions based on key concepts
(a) How much gravitational potential energy (relative to the ground on which it is built) is stored in the Grea...
College Physics
If you have an aqueous solution that contains 1.5 moles of HCI, how many moles of ions are in the solution?
a...
Chemistry: The Central Science (14th Edition)
39. Determine the molecular geometry and sketch each molecule or ion using the bond conventions shown in "Repre...
Chemistry: A Molecular Approach
[14.110] The following mechanism has been proposed for the gas-phase reaction of chloroform (CHCI3) and chlorin...
Chemistry: The Central Science (13th Edition)
How can 1H NMR distinguish between the compounds in each of the following pairs?
Organic Chemistry (8th Edition)
Q1. Which wavelength of light has the highest frequency?
a) 10 nm
b) 10 mm
c) 1 nm
d) 1 mm
Chemistry: A Molecular Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Fluoridation of city water supplies has been practiced in the United States for several decades. It is done by continuously adding sodium fluoride to water as it comes from a reservoir. Assume you live in a medium-sized city of 150,000 people and that 660 L (170 gal) of water is used per person per day. What mass of sodium fluoride (in kilograms) must be added to the water supply each year (365 days) to have the required fluoride concentration of 1 ppm (part per million)that is, 1 kilogram of fluoride per 1 million kilograms of water? (Sodium fluoride is 45.0% fluoride, and water has a density of 1.00 g/cm3.)arrow_forwardConsider three test tubes. Tube A has pure water. Tube B has an aqueous 1.0 m solution of ethanol, C2H5OH. Tube C has an aqueous 1.0 m solution of NaCl. Which of the following statements are true? (Assume that for these solutions 1.0m=1.0M.) (a) The vapor pressure of the solvent over tube A is greater than the solvent pressure over tube B. (b) The freezing point of the solution in tube B is higher than the freezing point of the solution in tube A. (c) The freezing point of the solution in tube B is higher than the freezing point of the solution in tube C. (d) The boiling point of the solution in tube B is higher than the boiling point of the solution in tube C. (e) The osmotic pressure of the solution in tube B is greater than the osmotic pressure of the solution in tube C.arrow_forwardThe dispersed phase of a certain colloidal dispersion consists of spheres of diameter 1.0 102 nm. (a) What are the volume (V=43r2) and surface area (A = r2) of each sphere? (b) How many spheres are required to give a total volume of 1.0 cm3? What is the total surface area of these spheres in square meters?arrow_forward
- Refer to Figure 13.10 ( Sec. 13-4b) to determine whether these situations would result in an unsaturated, saturated, or supersaturated solution. 120. g RbCl is added to 100. g H2O at 50 °C. 30. g KCl is dissolved in 100. g H2O at 70 °C. 20. g NaCl is dissolved in 50. g H2O at 60 °C. Figure 13.10 Solubility of ionic compounds versus temperature.arrow_forwardCalculate the molality of a solution made by dissolving 115.0 g ethylene glycol, HOCH2CH2OH, in 500. mL water. The density of water at this temperature is 0.978 g/mL. Calculate the molarity of the solution.arrow_forward6-111 As noted in Section 6-8C, the amount of external pressure that must be applied to a more concentrated solution to stop the passage of solvent molecules across a semipermeable membrane is known as the osmotic pressure The osmotic pressure obeys a law similar in form to the ideal gas law (discussed in Section 5-4), where Substituting for pressure and solving for osmotic pressures gives the following equation: RT MRT, where M is the concentration or molarity of the solution. (a) Determine the osmotic pressure at 25°C of a 0.0020 M sucrose (C12H22O11) solution. (b) Seawater contains 3.4 g of salts for every liter of solution. Assuming the solute consists entirely of NaCl (and complete dissociation of the NaCI salt), calculate the osmotic pressure of seawater at 25°C. (c) The average osmotic pressure of blood is 7.7 atm at 25°C. What concentration of glucose (C6H12O6) will be isotonic with blood? (d) Lysozyme is an enzyme that breaks bacterial cell walls. A solution containing 0.150 g of this enzyme in 210. mL of solution has an osmotic pressure of 0.953 torr at 25°C. What is the molar mass of lysozyme? (e) The osmotic pressure of an aqueous solution of a certain protein was measured in order to determine the protein's molar mass. The solution contained 3.50 mg of protein dissolved in sufficient water to form 5.00 mL of solution. The osmotic pressure of the solution at 25°C was found to be 1.54 torr. Calculate the molar mass of the protein.arrow_forward
- For each of the following pairs of solutions, select the solution for which solute solubility is greatest. a. Ammonia gas in water with P = 1 atm and T = 50C Ammonia gas in water with P = 1 atm and T = 90C b. Carbon dioxide gas in water with P = 2 atm and T = 50C Carbon dioxide gas in water with P = 1 atm and T = 50C c. Table salt in water with P = 1 atm and T = 60C Table salt in water with P = 1 atm and T = 50C d. Table sugar in water with P = 2 atm and T = 40C Table sugar in water with P = 1 atm and T = 70Carrow_forwardA sample of water contains 0.010 ppm lead ions, Pb2+. (a) Calculate the mass of lead ions per liter in this solution.(Assume the density of the water solution is 1.0 g/mL.) (b) Calculate the mass fraction of lead in ppb.arrow_forwardRefer to Figure 13.10 ( Sec. 13-4b) to answer these questions. (a) Does a saturated solution occur when 65.0 g LiCl is present in 100 g H2O at 40 C? Explain your answer. (b) Consider a solution that contains 95.0 g LiCl in 100 g H2O at 40 C. Is the solution unsaturated, saturated, or supersaturated? Explain your answer. (c) Consider a solution that contains 50. g Li2SO4 in 200. g H2O at 50 C. Is this solution unsaturated, saturated, or supersaturated? Explain your answer. Figure 13.10 Solubility of ionic compounds versus temperature.arrow_forward
- Instead of using NaCl to melt the ice on your sidewalk you decide to use CaCl2. If you add 35.0 g of CaCl2 to 150. g of water, what is the freezing point of the solution? (Assume i = 2.7 for CaCl2.)arrow_forwardFreezing point depression is one means of determining the molar mass of a compound. The freezing point depression constant of benzene is 5.12 C/m. a. When a 0.503 g sample of the white crystalline dimer is dissolved in 10.0 g benzene, the freezing point of benzene is decreased by 0542 C. Verify that the molar mass of the dimer is 475 g/mol when determined by freezing point depression. Assume no dissociation of the dimer occurs. b. The correct molar mass of the dimer is 487 g/mol. Explain why the dissociation equilibrium causes the freezing point depression calculation to yield a lower molar mass for the dimer.arrow_forwardAn unknown compound contains only carbon, hydrogen, and oxygen. Combustion analysis of the compound gives mass percents of 31.57% C and 5.30% H. The molar mass is determined by measuring the freezing-point depression of an aqueous solution. A freezing point of 5.20C is recorded for a solution made by dissolving 10.56 g of the compound in 25.0 g water. Determine the empirical formula, molar mass, and molecular formula of the compound. Assume that the compound is a nonelectrolyte.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY