![Chemistry & Chemical Reactivity](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
The equation for the straight line using the given data has to be written.
Concept Introduction:
Clausius-Clapeyron equation:
From this relationship we can calculate the molar enthalpy of vaporization by knowing the corresponding temperature and pressure values.
If we have pressures at two different temperatures, then enthalpy of vaporization can be calculated by
Boiling point of a liquid: The temperature at which external pressure and vapour pressure of the liquid become same.
Normal boiling point: When the external pressure is
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 66SCQ
The equation for straight line is
Explanation of Solution
Given:
2.30 | 0.00369 |
3.69 | 0.00342 |
4.61 | 0.00325 |
5.99 | 0.00297 |
6.63 | 0.00285 |
From the given data we can derive the equation for straight line
In the given graph
(b)
Interpretation:
The way by which enthalpy of vaporization can be calculated using the graph has to be given.
Concept Introduction:
Clausius-Clapeyron equation:
From this relationship we can calculate the molar enthalpy of vaporization by knowing the corresponding temperature and pressure values.
If we have pressures at two different temperatures, then enthalpy of vaporization can be calculated by
Boiling point of a liquid: The temperature at which external pressure and vapour pressure of the liquid become same.
Normal boiling point: When the external pressure is
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 66SCQ
The explanation for determining enthalpy of vaporization from the graph is given.
Explanation of Solution
Given:
Temperature | Vapour Pressure |
287 | 1 |
326.8 | 10 |
357.3 | 40 |
381.3 | 100 |
424.4 | 400 |
Using the data given we get a straight line graph and it satisfies the straight line equation
In the graph the y axis have
The equation corresponding to the straight line in the graph is
From the slope of the graph we can calculate the molar enthalpy of vaporization.
From the graph drawn,
Thus from the graph we can calculate the slope and using the equation
(c)
Interpretation:
The vapour pressure of ethanol at
Concept Introduction:
Clausius-Clapeyron equation:
From this relationship we can calculate the molar enthalpy of vaporization by knowing the corresponding temperature and pressure values.
If we have pressures at two different temperatures, then enthalpy of vaporization can be calculated by
Boiling point of a liquid: The temperature at which external pressure and vapour pressure of the liquid become same.
Normal boiling point: When the external pressure is
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 66SCQ
The vapour pressure of ethanol at
Explanation of Solution
We know the equation of the line. Substituting the given temperatures in this equation, we can calculate the vapour pressures.
Vapour pressure at
Vapour pressure at
Want to see more full solutions like this?
Chapter 11 Solutions
Chemistry & Chemical Reactivity
- Q1: For each molecule, assign each stereocenter as R or S. Circle the meso compounds. Label each compound as chiral or achiral. + CI Br : Н OH H wo་ཡིག་ཐrow HO 3 D ။။ဂ CI Br H, CI Br Br H₂N OMe R IN I I N S H Br ជ័យ CI CI D OHarrow_forwardPlease correct answer and don't use hand ratingarrow_forwardNonearrow_forward
- %Reflectance 95 90- 85 22 00 89 60 55 50 70 65 75 80 50- 45 40 WA 35 30- 25 20- 4000 3500 Date: Thu Feb 06 17:21:21 2025 (GMT-05:0(UnknownD Scans: 8 Resolution: 2.000 3000 2500 Wavenumbers (cm-1) 100- 2981.77 1734.25 2000 1500 1000 1372.09 1108.01 2359.09 1469.82 1181.94 1145.20 1017.01 958.45 886.97 820.49 668.25 630.05 611.37arrow_forwardNonearrow_forwardCH3 CH H3C CH3 H OH H3C- -OCH2CH3 H3C H -OCH3 For each of the above compounds, do the following: 1. List the wave numbers of all the IR bands in the 1350-4000 cm-1 region. For each one, state what bond or group it represents. 2. Label equivalent sets of protons with lower-case letters. Then, for each 1H NMR signal, give the 8 value, the type of splitting (singlet, doublet etc.), and the number protons it represents. of letter δ value splitting # of protons 3. Redraw the compound and label equivalent sets of carbons with lower-case letters. Then for each set of carbons give the 5 value and # of carbons it represents. letter δ value # of carbonsarrow_forward
- Nonearrow_forwardCarbohydrates- Draw out the Hawthorne structure for a sugar from the list given in class. Make sure to write out all atoms except for carbons within the ring. Make sure that groups off the carbons in the ring are in the correct orientation above or below the plane. Make sure that bonds are in the correct orientation. Include the full name of the sugar. You can draw out your curve within the text box or upload a drawing below.arrow_forwardHow many milliliters of 97.5(±0.5) wt% H2SO4 with a density of 1.84(±0.01) g/mL will you need to prepare 2.000 L of 0.110 M H2SO4? If the uncertainty in delivering H2SO4 is ±0.01 mL, calculate the absolute uncertainty in the molarity (0.110 M). Assume there is negligible uncertainty in the formula mass of H2SO4 and in the final volume (2.000 L) and assume random error.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133611097/9781133611097_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)