Physics for Scientists and Engineers, Vol. 1
6th Edition
ISBN: 9781429201322
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 50P
To determine
To Compare: The minimum energy needed to place a satellite into low Earth orbit
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Needs Complete handwritten solution with 100 % accuracy don't use chat gpt or ai plz plz plz.
Mehul
Two 0.60-kgkg basketballs, each with a radius of 19 cmcm , are just touching
a) How much energy is required to change the separation between the centers of the basketballs to 1.0 mm ? (Ignore any other gravitational interactions.)
b) How much energy is required to change the separation between the centers of the basketballs to 13 mm ? (Ignore any other gravitational interactions.)
Chapter 11 Solutions
Physics for Scientists and Engineers, Vol. 1
Ch. 11 - Prob. 1PCh. 11 - Prob. 2PCh. 11 - Prob. 3PCh. 11 - Prob. 4PCh. 11 - Prob. 5PCh. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - Prob. 8PCh. 11 - Prob. 9PCh. 11 - Prob. 10P
Ch. 11 - Prob. 11PCh. 11 - Prob. 12PCh. 11 - Prob. 13PCh. 11 - Prob. 14PCh. 11 - Prob. 15PCh. 11 - Prob. 16PCh. 11 - Prob. 17PCh. 11 - Prob. 18PCh. 11 - Prob. 19PCh. 11 - Prob. 20PCh. 11 - Prob. 21PCh. 11 - Prob. 22PCh. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - Prob. 25PCh. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - Prob. 33PCh. 11 - Prob. 34PCh. 11 - Prob. 35PCh. 11 - Prob. 36PCh. 11 - Prob. 37PCh. 11 - Prob. 38PCh. 11 - Prob. 39PCh. 11 - Prob. 40PCh. 11 - Prob. 41PCh. 11 - Prob. 42PCh. 11 - Prob. 43PCh. 11 - Prob. 44PCh. 11 - Prob. 45PCh. 11 - Prob. 46PCh. 11 - Prob. 47PCh. 11 - Prob. 48PCh. 11 - Prob. 49PCh. 11 - Prob. 50PCh. 11 - Prob. 51PCh. 11 - Prob. 52PCh. 11 - Prob. 53PCh. 11 - Prob. 54PCh. 11 - Prob. 55PCh. 11 - Prob. 56PCh. 11 - Prob. 57PCh. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - Prob. 60PCh. 11 - Prob. 61PCh. 11 - Prob. 62PCh. 11 - Prob. 63PCh. 11 - Prob. 64PCh. 11 - Prob. 65PCh. 11 - Prob. 66PCh. 11 - Prob. 67PCh. 11 - Prob. 68PCh. 11 - Prob. 69PCh. 11 - Prob. 70PCh. 11 - Prob. 71PCh. 11 - Prob. 72PCh. 11 - Prob. 73PCh. 11 - Prob. 74PCh. 11 - Prob. 75PCh. 11 - Prob. 76PCh. 11 - Prob. 77PCh. 11 - Prob. 78PCh. 11 - Prob. 79PCh. 11 - Prob. 80PCh. 11 - Prob. 81PCh. 11 - Prob. 82PCh. 11 - Prob. 83PCh. 11 - Prob. 84PCh. 11 - Prob. 85PCh. 11 - Prob. 86PCh. 11 - Prob. 87PCh. 11 - Prob. 88PCh. 11 - Prob. 89PCh. 11 - Prob. 90PCh. 11 - Prob. 91PCh. 11 - Prob. 92PCh. 11 - Prob. 93PCh. 11 - Prob. 94PCh. 11 - Prob. 95PCh. 11 - Prob. 96PCh. 11 - Prob. 97PCh. 11 - Prob. 98PCh. 11 - Prob. 99PCh. 11 - Prob. 100PCh. 11 - Prob. 101PCh. 11 - Prob. 102PCh. 11 - Prob. 103PCh. 11 - Prob. 104PCh. 11 - Prob. 105PCh. 11 - Prob. 106PCh. 11 - Prob. 107P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A private space agency places a satelite of mass 30 kg into orbit about the earth. The orbital alititude is 230 km above the surface of the Earth. (a) How long does the satellite take to complete one ciruclar orbit? (b) What is the speed of the satellite? (c) What is the minimum energy necessary to place this satellite in orbit?arrow_forwardDetermine (a) K.E. (b) P.E. (c) total energy and (d) binding energy of a satellite of mass 50 kg in circular orbit around the earth at a height of 600 km above the earth's surface. (Radius of earth r = 6400 km, mass of earth M = 6 x 1024 kg, G = 6.67 × 10-¹¹ S.I. units).arrow_forwardThe Explorer VIII satellite, placed into orbit November 3, 1960, to investigate the ionosphere, had the following orbit parameters: perigee, 459 km; apogee, 2 289 km (both distances above the Earth’s surface); period, 112.7 min. Findthe ratio υp /υa of the speed at perigee to that at apogee.arrow_forward
- o What LineaN speed must an Earth Satellite have to be in ciNculay Oxbit at an altitude of 182 Km What is the peopod of Yevoluion.arrow_forwardA satellite of mass “m” is in a circular orbit of radius 1.5R around the earth of radius R. How much energy is required to move it to an orbit of radius 2R? a) -(G*M*m)/12R b) (G*M*m)/12R c) -(G*M*m)/4R d) (G*M*m)/4Rarrow_forwardDesigning an interplanetary mission from Earth to Jupiter. Given the position and velocityvectors for the Earth parking orbit, r = 8228 I +389 J +6888 K (km)v = -0.7 I +6.6 J -0.6 K (km/s) 1.) Assuming that the satellite will enter the Hohmann transfer elliptical orbit from perigee of its current Earth parking orbit, determine the total velocity increment, Δvtotal required for a Hohmann transfer from the Earthparking orbit to 200km altitude Jupiter parking orbit. 2.) Calculate the semi-major axis, period in earth years, and eccentricity of the Hohmann transfer ellipse.arrow_forward
- Help me with this pleasearrow_forwardThe escape velocity from a massive object is the speed needed to reach an infinite distance from it and have just slowed to a stop, that is, to have just enough kinetic energy to climb out of the gravitational potential well and have none left. You can find the escape velocity by equating the total kinetic and gravitational potential energy to zero E=12mv2esc−GmM/r=0E=12mvesc2−GmM/r=0 vesc=2GM/r−−−−−−√vesc=2GM/r where GG is Newton's constant of gravitation, MM is the mass of the object from which the escape is happening, and rr is its radius. This is physics you have seen in the first part of the course, and you should be able to use it to find an escape velocity from any planet or satellite. For the Earth, for example the escape velocity is about 11.2 km/s, and for the Moon it is 2.38 km/s. A very important point about escape velocity: it does not depend on what is escaping. A spaceship or a molecule must have this velocity or more away from the center of the planet to be free…arrow_forward(a) x speed What Lineat must an Earth Satellite have to be in ciNculay Oxbit at an altitude of 182 Kmarrow_forward
- Consider the process of escaping from the solar system starting from the surface of Earth. Assume there are no other bodies involved. Earth has an orbital speed about the Sun of 29.8 km/s. Hint: 2GM does not apply. Use mv,? GM_m GM m 2 GM-m GMs" which includes the potential energy of both Earth and the Sun. 2.5 V. esc 2,E (a) What minimum speed relative to Earth (in km/s) would be needed? km/s In what direction should you leave Earth? O opposite the direction of Earth's orbital velocity O towards the Sun O away from the Sun O in the direction of Earth's orbital velocity (b) What will be the shape of the trajectory? O a circle O an ellipse O a hyperbola O a parabolaarrow_forwardThe amount of energy needed to increase the radius of orbit of a 500-kg satellite from its original orbit r-10 000 of radius 10 000 km can be modelled by the function E = 2: where E is the energy, in r Joules, and r is the new radius, in kilometers. a) Determine x-intercept(s) if it exists. b) Determine y-intercept(s) if it exists. c) Determine the equations of the horizontal asymptote if it exists. d) Determine the equations of the vertical asymptote(s) if it exists.arrow_forwardAn asteroid closely passes the Earth at a range of 17200mi and a relative speed of 7.8km/s.The diameter is estimated at 30mwith a specific gravity of 3. If this asteroid had impacted Earth, how much energy would have been released? Express this quantity in units of mega-tons (M ton) where a megaton is the energy released by one million metric tons of TNT explosive. A metric ton is 1000kgand the explosive energy density of TNT is 4184J/g.Hint: If the asteroid hits the Earth, its relative velocity becomes zero. Ignore any change in asteroid velocity due to gravitational acceleration or air resistance.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning