Physics for Scientists and Engineers, Vol. 1
6th Edition
ISBN: 9781429201322
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 52P
To determine
The maximum height reached by an object which is projected straight upwards from the surface of earth with an initial speed of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A projectile is shot straight up from the earth's surface at a speed of 1.00×104 km/hr .How high does it go?
A skater with mass 66 kg is skating on a horizontal surface at a constant speed 4.2 m/s. There is a ramp ahead, and the skater has just enough speed to make it to the top of the ramp (meaning the speed at the top of the ramp is 0 m/s). What is the height of the ramp in the unit of meters? Use g = 10 m/s2 for the acceleration due to gravity.
A distant planet has a mass of 5.00 x 1023 kg and a radius of 6.00 x 106 m. Someone is standing on the surface of the planet and throws a rock straight up with initial speed of 7.0 m/s. What is the maximum hight reached by the rock above the point from where it was thrown?
Chapter 11 Solutions
Physics for Scientists and Engineers, Vol. 1
Ch. 11 - Prob. 1PCh. 11 - Prob. 2PCh. 11 - Prob. 3PCh. 11 - Prob. 4PCh. 11 - Prob. 5PCh. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - Prob. 8PCh. 11 - Prob. 9PCh. 11 - Prob. 10P
Ch. 11 - Prob. 11PCh. 11 - Prob. 12PCh. 11 - Prob. 13PCh. 11 - Prob. 14PCh. 11 - Prob. 15PCh. 11 - Prob. 16PCh. 11 - Prob. 17PCh. 11 - Prob. 18PCh. 11 - Prob. 19PCh. 11 - Prob. 20PCh. 11 - Prob. 21PCh. 11 - Prob. 22PCh. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - Prob. 25PCh. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - Prob. 33PCh. 11 - Prob. 34PCh. 11 - Prob. 35PCh. 11 - Prob. 36PCh. 11 - Prob. 37PCh. 11 - Prob. 38PCh. 11 - Prob. 39PCh. 11 - Prob. 40PCh. 11 - Prob. 41PCh. 11 - Prob. 42PCh. 11 - Prob. 43PCh. 11 - Prob. 44PCh. 11 - Prob. 45PCh. 11 - Prob. 46PCh. 11 - Prob. 47PCh. 11 - Prob. 48PCh. 11 - Prob. 49PCh. 11 - Prob. 50PCh. 11 - Prob. 51PCh. 11 - Prob. 52PCh. 11 - Prob. 53PCh. 11 - Prob. 54PCh. 11 - Prob. 55PCh. 11 - Prob. 56PCh. 11 - Prob. 57PCh. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - Prob. 60PCh. 11 - Prob. 61PCh. 11 - Prob. 62PCh. 11 - Prob. 63PCh. 11 - Prob. 64PCh. 11 - Prob. 65PCh. 11 - Prob. 66PCh. 11 - Prob. 67PCh. 11 - Prob. 68PCh. 11 - Prob. 69PCh. 11 - Prob. 70PCh. 11 - Prob. 71PCh. 11 - Prob. 72PCh. 11 - Prob. 73PCh. 11 - Prob. 74PCh. 11 - Prob. 75PCh. 11 - Prob. 76PCh. 11 - Prob. 77PCh. 11 - Prob. 78PCh. 11 - Prob. 79PCh. 11 - Prob. 80PCh. 11 - Prob. 81PCh. 11 - Prob. 82PCh. 11 - Prob. 83PCh. 11 - Prob. 84PCh. 11 - Prob. 85PCh. 11 - Prob. 86PCh. 11 - Prob. 87PCh. 11 - Prob. 88PCh. 11 - Prob. 89PCh. 11 - Prob. 90PCh. 11 - Prob. 91PCh. 11 - Prob. 92PCh. 11 - Prob. 93PCh. 11 - Prob. 94PCh. 11 - Prob. 95PCh. 11 - Prob. 96PCh. 11 - Prob. 97PCh. 11 - Prob. 98PCh. 11 - Prob. 99PCh. 11 - Prob. 100PCh. 11 - Prob. 101PCh. 11 - Prob. 102PCh. 11 - Prob. 103PCh. 11 - Prob. 104PCh. 11 - Prob. 105PCh. 11 - Prob. 106PCh. 11 - Prob. 107P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In Example 2.6, we considered a simple model for a rocket launched from the surface of the Earth. A better expression for the rockets position measured from the center of the Earth is given by y(t)=(R3/2+3g2Rt)2/3j where R is the radius of the Earth (6.38 106 m) and g is the constant acceleration of an object in free fall near the Earths surface (9.81 m/s2). a. Derive expressions for vy(t) and ay(t). b. Plot y(t), vy(t), and ay(t). (A spreadsheet program would be helpful.) c. When will the rocket be at y=4R? d. What are vy and ay when y=4R?arrow_forwardAt what height above the surface of the Earth , acceleration due to gravity will be 50% of its value on the surface of the Earth( Radius of Earth is 6400km and g on the surface of the Earth is 9.8km/s2.arrow_forwardAn object is hovering about the surface of the earth. It begins to experience a gravitational acceleration of 2.0 m/s2. How high is it above the surface of the earth?arrow_forward
- A rock is dropped from high above the surface of the Earth. The initial speed is 0, and the initial height above the surface is NxRg where Rg is the radius of the Earth. Calculate the speed of the rock when it hits the upper atmosphere, say at height 20 km above the surface. DATA for the Earth: radius Rg = 6.38 x 108 m; mass M = 5.98 x 1024 kg. N = 9; (in m/s) OA: 7.258x103 OB: 1.052×104 OC: 1.526x104 OD: 2.213x104 OE: 3.208x104 OF: 4.652x104 OG: 6.746x104 OH: 9.781x104arrow_forwardA planet orbiting a distant star has radius 3.54×106 m. The escape speed for an object launched from this planet's surface is 7.15×103 m/s. What is the acceleration due to gravity at the surface of the planet?arrow_forwardA planet orbiting a distant star has radius 3.54×106 mm. The escape speed for an object launched from this planet's surface is 7.65×103 m/sm/s. What is the acceleration due to gravity at the surface of the planet? Express your answer with the appropriate units.arrow_forward
- An inventor wants to launch small satellites into orbit by launching them straight up from the surface of the earth, at very high speeds. a) With what speed should he launch the satellite if it is to have a speed of 500 m/s at a height of 400 km? Ignore air resistance. b) By what percentage would your answer be in error if you used a flat earth approximation? y2 400 km r, = R, + y2 vy= 500 tm/s After: Yi =0 km n = R Before: Re Eartharrow_forwardJupiter's moon Io has active volcanoes (in fact, it is the most volcanically active body in the solar system) that eject material as high as 500 km (or even higher) above the surface. Io has a mass of 8.93×1022kg and a radius of 1821 km. For this calculation, ignore any variation in gravity over the 500 km range of the debris. How high would this material go on earth if it were ejected with the same speed as on Io?arrow_forwardA rocket is launched off the surface of earth. If it has a speed of 2.62×103 m/s, what height above the surface will it reach? Take the radius of the earth to be 6.37×106 m and the mass of the earth to be 5.98×1024 kg.arrow_forward
- An inventor wants to launch small satellites into orbit by launching them straight up from the surface of the earth, at very high speeds. a) With what speed should he launch the satellite if it is to have a speed of 500 m/s at a height of 400 km? Ignore air resistance. b) By what percentage would your answer be in error if you used a flat earth approximation? y2 400 km r R, + y2 Vy= 500 ta/s After: y =0 km = R. Before: Re Eartharrow_forwardA comet goes around the Sun in an elliptical orbit. At its farthest point, 600 million miles from the Sun, it is traveling with a speed of 15000 mi/h. How fast is it traveling at its closest approach to the Sun, at a distance of 100 million miles?arrow_forwardThe gravitational acceleration on a planet's surface is 17.0 m/s2. What is the gravitational acceleration at a point where you were 2.50 times the planet's radius above the surface of the planet?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning