Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
4th Edition
ISBN: 9780133953145
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 44EAP
Air-track gliders with masses 300 g, 400 g, and 200 g are lined up and held in place with lightweight springs compressed between them. All three are released at once. The 200 g glider flies off to the right while the 300 g glider goes left. Their position-versus-time graphs, as measured by motion detectors, are shown in FIGURE P11.44. What are the direction (right or left) and speed of the 400 g glider that was in the middle?
FIGURE P11.44
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two 500 g blocks of wood are 2.0 m apart on a frictionless table. A
11 g bullet is fired at 450 m/s toward the blocks. It passes all the
way through the first block, then embeds itself in the second block.
The speed of the first block immediately afterward is 5.6 m/s.
What is the speed of the second block after the bullet stops?
Express your answer to two significant figures and include the appropriate units.
V=
μA
Value
m
S
?
A white billiard ball, moving horizontally strikes a red billiard ball, at rest. Before
impact, the white ball was moving at a speed of 2.50 m/s and angle of 21° from
the horizontal, and after impact it is moving at 0.50 m/s at 45° from the horizontal.
a. If the two balls have equal masses of 160 g, what is the velocity of the red
ball after the impact? Include its magnitude and direction.
b. Is the collision elastic? Show how you know this.
Two remote control cars with masses of 1.15 kilograms and 1.98 kilograms travel toward each other at speeds of 8.41 meters per second and 3.97 meters per second, respectively. The cars collide head-on, and the less massive car recoils with a speed of 2.25 meters per second.a. What is the final speed of the second car?
b. How much kinetic energy is lost in this collision?
Chapter 11 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
Ch. 11 - Prob. 1CQCh. 11 - Prob. 2CQCh. 11 - \A 2 kg object is moving to the right with a speed...Ch. 11 - Prob. 4CQCh. 11 - Prob. 5CQCh. 11 - Angie, Brad, and Carlos are discussing a physics...Ch. 11 - Prob. 7CQCh. 11 - Automobiles are designed with “crumple zones”...Ch. 11 - A golf club continues forward after hitting the...Ch. 11 - Suppose a rubber ball collides head-on with a more...
Ch. 11 - Two particles collide, one of which was initially...Ch. 11 - Two ice skaters, Paula and Ricardo, push off from...Ch. 11 - Prob. 13CQCh. 11 - At what speed do a bicycle and its rider, with a...Ch. 11 - What is the magnitude of the momentum of A 3000 kg...Ch. 11 - What impulse does the force shown in FIGURE EX11.3...Ch. 11 - What is the impulse on a 3.0 kg particle that...Ch. 11 - Prob. 5EAPCh. 11 - Prob. 6EAPCh. 11 - Prob. 7EAPCh. 11 - Prob. 8EAPCh. 11 - Prob. 9EAPCh. 11 - A sled slides along a horizontal surface on which...Ch. 11 - Prob. 11EAPCh. 11 - A g air-track glider collides with a spring at one...Ch. 11 - A 250 g ball collides with a wall. FIGURE EX11.13...Ch. 11 - A 5000 kg open train car is rolling on...Ch. 11 - Prob. 15EAPCh. 11 - Prob. 16EAPCh. 11 - Three identical train cars, coupled together, are...Ch. 11 - A 300 g bird flying along at 6.0 m/s sees a 10 g...Ch. 11 - Prob. 19EAPCh. 11 - A 1500 kg car is rolling at 2.0 m/s. You would...Ch. 11 - Prob. 21EAPCh. 11 - A 50 g marble moving at 2.0 m/s strikes a 20 g...Ch. 11 - A proton is traveling to the right at 2.0 × 107...Ch. 11 - Prob. 24EAPCh. 11 - Prob. 25EAPCh. 11 - Prob. 26EAPCh. 11 - Prob. 27EAPCh. 11 - Prob. 28EAPCh. 11 - Prob. 29EAPCh. 11 - Prob. 30EAPCh. 11 - Two particles collide and bounce apart. FIGURE...Ch. 11 - An object at rest explodes into three fragments....Ch. 11 - A 20 g ball of clay traveling east at 3.0 m/s...Ch. 11 - 34. At the center of a 50-m-diameter circular ice...Ch. 11 - A small rocket with 15 kN thrust burns 250 kg of...Ch. 11 - A rocket in deep space has an empty mass of 150 kg...Ch. 11 - A rocket in deep space has an exhaust-gas speed of...Ch. 11 - A tennis player swings her 1000 g racket with a...Ch. 11 - A 60 g tennis ball with an initial speed of 32 m/s...Ch. 11 - A 500 g cart is released from rest 1.00 m from the...Ch. 11 - A 200 g ball is dropped from a height of 2.0 m,...Ch. 11 - The flowers of the bunchberry plant open with...Ch. 11 - A particle of mass in is at rest at t = 0. Its...Ch. 11 - Air-track gliders with masses 300 g, 400 g, and...Ch. 11 - Most geologists believe that the dinosaurs became...Ch. 11 - Squids rely on jet propulsion to move around. A...Ch. 11 - A firecracker in a coconut blows the coconut into...Ch. 11 - One billiard ball is shot east at 2.0 m/s. A...Ch. 11 - a. A bullet of mass m is fired into a block of...Ch. 11 - Prob. 50EAPCh. 11 - An object at rest on a flat, horizontal surface...Ch. 11 - A 1500 kg weather rocket accelerates upward at 10...Ch. 11 - Prob. 53EAPCh. 11 - Two 5 g blocks of wood are 2.0 m apart on a...Ch. 11 - A 100 g granite cube slides down a 40°...Ch. 11 - You have been asked to design a “ballistic spring...Ch. 11 - In FIGUREP11.57, a block of mass m slides along a...Ch. 11 - The stoplight had just changed and a 2000 kg...Ch. 11 - Prob. 59EAPCh. 11 - Force Fx= (10 N) sin (2pt/4.0 s) is exerted on a...Ch. 11 - A 500 g particle has velocity vx=5.0 m/s at t = 2...Ch. 11 - 30 ton rail car and a 90 ton rail car, initially...Ch. 11 - Prob. 63EAPCh. 11 - Prob. 64EAPCh. 11 - Prob. 65EAPCh. 11 - Old naval ships fired 10 kg cannon balls from a...Ch. 11 - A proton (mass 1 u) is shot toward an unknown...Ch. 11 - The nucleus of the polonium isotope 214Po (mass...Ch. 11 - Prob. 69EAPCh. 11 - A 20 g ball of clay traveling east at 2.0 m/s...Ch. 11 - Prob. 71EAPCh. 11 - Prob. 72EAPCh. 11 - Prob. 73EAPCh. 11 - a. To understand why rockets often have multiple...Ch. 11 - Prob. 75EAPCh. 11 - Prob. 76EAPCh. 11 - Prob. 77EAPCh. 11 - In Problems 75 through 78 you are given the...Ch. 11 - A 1000 kg cart is rolling to the right at 5.0 m/s....Ch. 11 - Prob. 80EAPCh. 11 - Prob. 81EAPCh. 11 - A two-stage rocket is traveling at 1200 m/s with...Ch. 11 - 83. The air-track carts in FIGURE P11.83 are...Ch. 11 - Section 11.6 found an equation for vmaxof a rocket...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A model rocket is shot straight up and explodes at the top of its trajectory into three pieces as viewed from above and shown in Figure P10.44. The masses of the three pieces are mA = 100.0 g, mB = 20.0 g, and mC = 30.0 g. Immediately after the explosion, piece A is traveling at 1.50 m/s, and piece B is traveling at 7.00 m/s in a direction 30 below the negative x axis as shown. What is the velocity of piece C? FIGURE P10.44 Problems 44 and 45. 45. We can use the conservation of momentum (Eq. 10.9). The total initial momentum is zero, so the sum of all the final momenta should be zero. mAvAf+mBvBf+mCvCf=0 This velocities for A and B can be expressed as vectors. vAf=1.50jm/svBf=(7.00im/s)cos30(7.00jm/s)sin30=(6.06i3.50j)m/s We can now solve the momentum equation. (100.0g)(1.50jm/s)+(20.0g)(6.06i3.50j)m/s+(30.0g)vCf=0vCf=(4.04i2.67j)m/s The velocity of piece C is down and to the right as expected.arrow_forwardA cart filled with sand rolls at a speed of 1.0 m/s along a horizontal path without friction. A ball of mass m = 2.0 kg is thrown with a horizontal velocity of 8.0 m/s toward the cart as shown in Figure P11.79. The ball gets stuck in the sand. What is the velocity of the cart after the ball strikes it? The mass of the cart is 15 kg. FIGURE P11.79 Problems 79 and 80.arrow_forwardThe space shuttle uses its thrusters with an exhaust velocity of 4440 m/s. The shuttle is initially at rest in space and accelerates to a final speed of 1.00 km/s. a. What percentage of the initial mass of the shuttle (including the full fuel tank) must be ejected to reach that speed? b. If the mass of the shuttle and fuel is initially 1.85 106 kg, how much fuel is expelled?arrow_forward
- One object (m1 = 0.200 kg) is moving to the right with a speed of 2.00 m/s when it is struck from behind by another object (m2 = 0.300 kg) that is moving to the right at 6.00 m/s. If friction is negligible and the collision between these objects is elastic, find the final velocity of each.arrow_forwardA rocket has total mass Mi = 360 kg, including Mfuel = 330 kg of fuel and oxidizer. In interstellar space, it starts from rest at the position x = 0, turns on its engine at time t = 0, and puts out exhaust with relative speed ve = 1 500 m/s at the constant rate k = 2.50 kg/s. The fuel will last for a burn time of Tb = Mfuel/k = 330 kg/(2.5 kg/s) = 132 s. (a) Show that during the burn the velocity of the rocket as a function of time is given by v(t)=veln(1ktMi) (b) Make a graph of the velocity of the rocket as a function of time for times running from 0 to 132 s. (c) Show that the acceleration of the rocket is a(t)=kveMikt (d) Graph the acceleration as a function of time. (c) Show that the position of the rocket is x(t)=ve(Mikt)ln(1ktMi)+vet (f) Graph the position during the burn as a function of time.arrow_forwardThere is a compressed spring between two laboratory carts of masses m1 = 105 g and m2 = 212 g. Initially, the carts are held at rest on a horizontal track (Fig. P10.40A). The carts are released, and the cart of mass m1 has velocity vi=2.035i m/s in the positive x direction (Fig. 10.40B). Assume rolling friction is negligible. a. What is the net external force on the two-cart system? b. Find the velocity of cart 2. FIGURE P10.40 Problems 40 and 41.arrow_forward
- A comet is traveling through space with speed 3.33 104 m/s when it encounters an asteroid that was at rest. The comet and the asteroid stick together, becoming a single object with a single velocity. If the mass of the comet is 1.11 1014 kg and the mass of the asteroid is 6.66 1020 kg, what is the final velocity of their combination?arrow_forwardFigure P9.59a shows an overhead view of the configuration of two pucks of mass In on frictionless ice. The pucks are tied together with a string of length 1' and negligible mass. At time t = 0, a constant force of magnitude F begins to pull to the right on the center point of the string. At time t, the moving pucks strike each other and stick together. At this time, the force has moved through a distance 4 and the pucks have attained a speed v (Fig. P9.59b). (a) What is v in terms of F, d, e, and in? (b) How much of the energy transferred into the system by work done by the force has been transformed to internal energy?arrow_forwardN A bomb explodes into three pieces A, B, and C of equal mass. Piece A flies with a speed of 40.0 m/s, and piece B with a speed of 30.0 m/s at an angle of 90° relative to the direction of A as shown in Figure P11.57. Determine the speed of piece C and the direction of its velocity relative to the direction of piece A.arrow_forward
- An object of mass m = 4.00 kg that is moving with a speed of 10.0 m/s collides head-on with another object, and the collision lasts 1.50 s. A graph showing the magnitude of the force during the collision versus time is shown in Figure P11.59, where the force is exerted in the direction opposite the initial velocity. Find the speed of the 4.00-kg mass after collision. FIGURE P11.59arrow_forwardA small block of mass m1 = 0.500 kg is released from rest at the top of a frictionless, curve-shaped wedge of mass m2 = 3.00 kg, which sits on a frictionless, horizontal surface as shown in Figure P8.55a. When the block leaves the wedge, its velocity is measured to be 4.00 m/s to the right as shown in Figure P8.55b. (a) What is the velocity of the wedge after the block reaches the horizontal surface? (b) What is the height h of the wedge?arrow_forwardA submarine with a mass of 6.26 106 kg contains a torpedo with a mass of 354 kg. The submarine fires the torpedo at an angle of 25 with respect to the horizontal as shown in Figure P10.42. a. If the submarine and the torpedo were initially at rest and the torpedo left the submarine with a speed of 89.2 m/s, what is the recoil speed of the submarine? b. What is the direction of recoil of the submarine? FIGURE P10.42arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Impulse Derivation and Demonstration; Author: Flipping Physics;https://www.youtube.com/watch?v=9rwkTnTOB0s;License: Standard YouTube License, CC-BY