Foundations of Astronomy (MindTap Course List)
14th Edition
ISBN: 9781337399920
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 3LTL
To determine
The inference on looking at the dark globule in figure 11-6a from the other side.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
White Dwarf Size II. The white dwarf, Sirius B, contains 0.98 solar mass, and its density is about 2 x 106 g/cm?. Find the radius of the white dwarf in km to three significant digits. (Hint: Density = mass/volume, and the volume of a
4
sphere is Tr.)
3
km
Compare your answer with the radii of the planets listed in the Table A-10. Which planet is this white dwarf is closely equal to in size?
I Table A-10 I Properties of the Planets
ORBITAL PROPERTIES
Semimajor Axis (a)
Orbital Period (P)
Average Orbital
Velocity (km/s)
Orbital
Inclination
Planet
(AU)
(106 km)
(v)
(days)
Eccentricity
to Ecliptic
Mercury
0.387
57.9
0.241
88.0
47.9
0.206
7.0°
Venus
0.723
108
0.615
224.7
35.0
0.007
3.4°
Earth
1.00
150
1.00
365.3
29.8
0.017
Mars
1.52
228
1.88
687.0
24.1
0.093
1.8°
Jupiter
5.20
779
11.9
4332
13.1
0.049
1.30
Saturn
9.58
1433
29.5
10,759
9.7
0.056
2.5°
30,799
60,190
Uranus
19.23
2877
84.3
6.8
0.044
0.8°
Neptune
* By definition.
30.10
4503
164.8
5.4
0.011
1.8°
PHYSICAL PROPERTIES (Earth = e)…
The difference in absolute magnitude between two objects is related to their fluxes by the flux-magnitude relation:
FA / FB = 2.51(MB - MA)
A distant galaxy contains a supernova with an absolute magnitude of -19. If this supernova were placed next to our Sun (M = +4.8) and you observed both of them from the same distance, how much more flux would the supernova emit than the Sun?
Fsupernova / FSun = ?
Consider the image above of the Cassiopeia A (Cas A) supernova remnant. The supernova explosion that caused this remnant was observed on earth about 300 years ago. It is about 3000 pc away. Since that time, the shockwave from the supernova has expanded to form the roughly spherical cloud pictured above. From the center point to the edge of the cloud is about 3 pc. Compute the angular diameter of the Cas A supernova remnant as viewed from Earth. Express your answer in arcminutes.
Chapter 11 Solutions
Foundations of Astronomy (MindTap Course List)
Ch. 11 - Prob. 1RQCh. 11 - Prob. 2RQCh. 11 - Prob. 3RQCh. 11 - Prob. 4RQCh. 11 - During free-fall collapse, what keeps the...Ch. 11 - Prob. 6RQCh. 11 - Prob. 7RQCh. 11 - Prob. 8RQCh. 11 - Prob. 9RQCh. 11 - Prob. 10RQ
Ch. 11 - Prob. 11RQCh. 11 - Prob. 12RQCh. 11 - Prob. 13RQCh. 11 - Describe the three ways thermal energy can be...Ch. 11 - Prob. 15RQCh. 11 - Prob. 16RQCh. 11 - How does the CNO cycle differ from the...Ch. 11 - Prob. 18RQCh. 11 - Prob. 19RQCh. 11 - Prob. 20RQCh. 11 - Prob. 21RQCh. 11 - Prob. 22RQCh. 11 - Prob. 23RQCh. 11 - Prob. 24RQCh. 11 - Prob. 1PCh. 11 - Prob. 2PCh. 11 - Prob. 3PCh. 11 - Prob. 4PCh. 11 - If a protostellar disk is 200 AU in radius and the...Ch. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - Prob. 8PCh. 11 - Prob. 9PCh. 11 - Prob. 10PCh. 11 - Prob. 11PCh. 11 - Prob. 12PCh. 11 - If the Orion Nebula is 8 pc in diameter and has a...Ch. 11 - Prob. 14PCh. 11 - Prob. 1SOPCh. 11 - Prob. 2SOPCh. 11 - Prob. 1LTLCh. 11 - Prob. 2LTLCh. 11 - Prob. 3LTLCh. 11 - Prob. 4LTLCh. 11 - Prob. 5LTLCh. 11 - Prob. 6LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You can estimate the age of the planetary nebula in image (c) in Figure 22.18. The diameter of the nebula is 600 times the diameter of our own solar system, or about 0.8 light-year. The gas is expanding away from the star at a rate of about 25 mi/s. Considering that distance=velocitytime , calculate how long ago the gas left the star if its speed has been constant the whole time. Make sure you use consistent units for time, speed, and distance. Figure 22.18 Gallery of Planetary Nebulae. This series of beautiful images depicting some intriguing planetary nebulae highlights the capabilities of the Hubble Space Telescope. (a) Perhaps the best known planetary nebula is the Ring Nebula (M57), located about 2000 lightyears away in the constellation of Lyra. The ring is about 1 light-year in diameter, and the central star has a temperature of about 120,000 °C. Careful study of this image has shown scientists that, instead of looking at a spherical shell around this dying star, we may be looking down the barrel of a tube or cone. The blue region shows emission from very hot helium, which is located very close to the star; the red region isolates emission from ionized nitrogen, which is radiated by the coolest gas farthest from the star; and the green region represents oxygen emission, which is produced at intermediate temperatures and is at an intermediate distance from the star. (b) This planetary nebula, M2-9, is an example of a butterfly nebula. The central star (which is part of a binary system) has ejected mass preferentially in two opposite directions. In other images, a disk, perpendicular to the two long streams of gas, can be seen around the two stars in the middle. The stellar outburst that resulted in the expulsion of matter occurred about 1200 years ago. Neutral oxygen is shown in red, once-ionized nitrogen in green, and twice-ionized oxygen in blue. The planetary nebula is about 2100 light-years away in the constellation of Ophiuchus. (c) In this image of the planetary nebula NGC 6751, the blue regions mark the hottest gas, which forms a ring around the central star. The orange and red regions show the locations of cooler gas. The origin of these cool streamers is not known, but their shapes indicate that they are affected by radiation and stellar winds from the hot star at the center. The temperature of the star is about 140,000 °C. The diameter of the nebula is about 600 times larger than the diameter of our solar system. The nebula is about 6500 light-years away in the constellation of Aquila. (d) This image of the planetary nebula NGC 7027 shows several stages of mass loss. The faint blue concentric shells surrounding the central region identify the mass that was shed slowly from the surface of the star when it became a red giant. Somewhat later, the remaining outer layers were ejected but not in a spherically symmetric way. The dense clouds formed by this late ejection produce the bright inner regions. The hot central star can be seen faintly near the center of the nebulosity. NGC 7027 is about 3000 light-years away in the direction of the constellation of Cygnus. (credit a: modification of work by NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration; credit b: modification of work by Bruce Balick (University of Washington), Vincent Icke (Leiden University, The Netherlands), Garrelt Mellema (Stockholm University), and NASA; credit c: modification of work by NASA, The Hubble Heritage Team (STScI/AURA); credit d: modification of work by H. Bond (STScI) and NASA)arrow_forwardExplain why the sky is blue and how that relates to reflection nebulae.arrow_forwardConsider a grain of sand that contains 1 mg of oxygen (a typical amount for a medium-sized sand grain, since sand is mostly SiO2). How many oxygen atoms does the grain contain? What is the radius of the sphere you would have to spread them out over if you wanted them to have the same density as the interstellar medium, about 1 atom per cm3? You can look up the mass of an oxygen atom.arrow_forward
- The best parallaxes obtained with Hipparcos have an accuracy of 0.001 arcsec. If you want to measure the distance to a star with an accuracy of 10%, its parallax must be 10 times larger than the typical error. How far away can you obtain a distance that is accurate to 10% with Hipparcos data? The disk of our Galaxy is 100,000 light-years in diameter. What fraction of the diameter of the Galaxy’s disk is the distance for which we can measure accurate parallaxes?arrow_forwardIdentify several dark nebulae in photographs in this chapter. Give the figure numbers of the photographs, and specify where the dark nebulae are to be found on them.arrow_forwardConsider the following five kinds of objects: open cluster, giant molecular cloud, globular cluster, group of O and B stars, and planetary nebulae. A. Which occur only in spiral arms? B. Which occur only in the parts of the Galaxy other than the spiral arms? C. Which are thought to be very young? D. Which are thought to be very old? E. Which have the hottest stars?arrow_forward
- H II regions can exist only if there is a nearby star hot enough to ionize hydrogen. Hydrogen is ionized only by radiation with wavelengths shorter than 91.2 nm. What is the temperature of a star that emits its maximum energy at 91.2 nm? (Use Wien’s law from Radiation and Spectra.) Based on this result, what are the spectral types of those stars likely to provide enough energy to produce H II regions?arrow_forwardThe time it takes for a cloud 106,000 AU in radius to collapse in "free-tall to form a new star is half the time it would take for an object to orbit the star on an extremely elliptical orbit with a semimajor axis of 53,000 AU (half the 106.000 AU radius). Part A Use Kepler's third law to find the collapse time, assuming the star has the same mass as the Sun. Express your answer in years to two significant figures. VE ΑΣΦΑ t= Submit Provide Feedback Request Answer yearsarrow_forward1) There is a one earth mass planet orbiting an M5 star of 0.2 Mo and luminosity 1x10-2 Lo- A) How close does the planet need to be to the star in order to receive the same amount of energy as the Earth receives from the sun? B) What is the orbital period of the planet at this distance? C) What is the magnitude of the radial velocity perturbation of the star? D) If the system is edge on to us, would we be likely to detect this planet using the radial velocity method?arrow_forward
- Let’s say you’re looking for extrasolar planets. You observe a star that has a spectral shift in the line that is supposed to be at at 656.28011 nm – this star shows this line at 656.28005 nm. What is the radial velocity of star (in m/s) and in what direction in relation to you? a) 27.4 m/s, towards b) 27.4 km/s, away c) -27.4 m/s, toward d) -27.4 km/s, awayarrow_forwardPhyisics: Extinction dims starlight by about 1 magnitude per 1000 pc. What fraction of photons survives a trip of 1000 pc? The expanding bubble of hot gas inflated by the cluster of new stars in its center, shown in Figure 9-7a, has a diameter of about 70 ly. If the bubble is 170,000 ly from Earth, what is the observed diameter of the bubble in arcseconds?arrow_forwardWhy are emission nebulae red ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax