Foundations of Astronomy (MindTap Course List)
14th Edition
ISBN: 9781337399920
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 10P
To determine
The minimum temperature at the surface of Orion Nebula to ionize hydrogen identifies the spectral class based on minimum temperature and check whether it matches with data in the textbook about the same.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How does one go about these questions?
A star with spectral type A0 has a surface temperature of 9600 K and a radius of 2.2 RSun. How many times more luminous is this star than the Sun? (if it is less luminous enter a number less than one)
This star has a mass of 3.3 MSun. Using the simple approximation that we made in class, what is the main sequence lifetime of this star? You may assume that the lifetime of the sun is 1010 yr.
Compare this to the lifetime of a A0 star listed in Table 22.1 (computed using a more sophisticated approach). Is the value you calculated in the previous problem longer or shorter than what is reported in the table? (L for longer, S for shorter) (You only get one try at this problem.)
If the hottest star in the Carina Nebula has a surface temperature of 51,000 K, at what wavelength (in nm) does it radiate the most energy?
Hint: Use Wien's law:
?max =
2.90 ✕ 106 nm · K
T
How does that compare with 91.2 nm, the wavelength of photons with just enough energy to ionize hydrogen?
-The wavelength calculated above is shorter than 91.2 nm. Photons at this calculated wavelength will have more than enough energy to ionize hydrogen.
-The wavelength calculated above is longer than 91.2 nm. Photons at this calculated wavelength will have more than enough energy to ionize hydrogen.
-The wavelength calculated above is shorter than 91.2 nm. Photons at this calculated wavelength will not have enough energy to ionize hydrogen.
-The wavelength calculated above is longer than 91.2 nm. Photons at this calculated wavelength will not have enough energy to ionize hydrogen.
Chapter 11 Solutions
Foundations of Astronomy (MindTap Course List)
Ch. 11 - Prob. 1RQCh. 11 - Prob. 2RQCh. 11 - Prob. 3RQCh. 11 - Prob. 4RQCh. 11 - During free-fall collapse, what keeps the...Ch. 11 - Prob. 6RQCh. 11 - Prob. 7RQCh. 11 - Prob. 8RQCh. 11 - Prob. 9RQCh. 11 - Prob. 10RQ
Ch. 11 - Prob. 11RQCh. 11 - Prob. 12RQCh. 11 - Prob. 13RQCh. 11 - Describe the three ways thermal energy can be...Ch. 11 - Prob. 15RQCh. 11 - Prob. 16RQCh. 11 - How does the CNO cycle differ from the...Ch. 11 - Prob. 18RQCh. 11 - Prob. 19RQCh. 11 - Prob. 20RQCh. 11 - Prob. 21RQCh. 11 - Prob. 22RQCh. 11 - Prob. 23RQCh. 11 - Prob. 24RQCh. 11 - Prob. 1PCh. 11 - Prob. 2PCh. 11 - Prob. 3PCh. 11 - Prob. 4PCh. 11 - If a protostellar disk is 200 AU in radius and the...Ch. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - Prob. 8PCh. 11 - Prob. 9PCh. 11 - Prob. 10PCh. 11 - Prob. 11PCh. 11 - Prob. 12PCh. 11 - If the Orion Nebula is 8 pc in diameter and has a...Ch. 11 - Prob. 14PCh. 11 - Prob. 1SOPCh. 11 - Prob. 2SOPCh. 11 - Prob. 1LTLCh. 11 - Prob. 2LTLCh. 11 - Prob. 3LTLCh. 11 - Prob. 4LTLCh. 11 - Prob. 5LTLCh. 11 - Prob. 6LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- White Dwarf Size II. The white dwarf, Sirius B, contains 0.98 solar mass, and its density is about 2 x 106 g/cm?. Find the radius of the white dwarf in km to three significant digits. (Hint: Density = mass/volume, and the volume of a 4 sphere is Tr.) 3 km Compare your answer with the radii of the planets listed in the Table A-10. Which planet is this white dwarf is closely equal to in size? I Table A-10 I Properties of the Planets ORBITAL PROPERTIES Semimajor Axis (a) Orbital Period (P) Average Orbital Velocity (km/s) Orbital Inclination Planet (AU) (106 km) (v) (days) Eccentricity to Ecliptic Mercury 0.387 57.9 0.241 88.0 47.9 0.206 7.0° Venus 0.723 108 0.615 224.7 35.0 0.007 3.4° Earth 1.00 150 1.00 365.3 29.8 0.017 Mars 1.52 228 1.88 687.0 24.1 0.093 1.8° Jupiter 5.20 779 11.9 4332 13.1 0.049 1.30 Saturn 9.58 1433 29.5 10,759 9.7 0.056 2.5° 30,799 60,190 Uranus 19.23 2877 84.3 6.8 0.044 0.8° Neptune * By definition. 30.10 4503 164.8 5.4 0.011 1.8° PHYSICAL PROPERTIES (Earth = e)…arrow_forward12.1 In a certain part of the North American Nebula, the amount of interstellar extinction in the visual wavelength band is 1.1 magnitudes. The thickness of the nebula is estimated to be 20 pc, and it is located 700 pc from Earth. Suppose that a B spectral class main-sequence star is observed in the direction of the nebula and that the absolute visual magnitude of the star is known to be My = -1.1 from spectroscopic data. Neglect any other sources of extinction between the observer and the nebula. (a) Find the apparent visual magnitude of the star if it is lying just in front of the nebula. (b) Find the apparent visual magnitude of the star if it is lying just behind the nebula. Problems 443 (c) Without taking the existence of the nebula into consideration, based on its apparent mag- nitude, how far away does the star in part (b) appear to be? What would be the percentage error in determining the distance if interstellar extinction were neglected?arrow_forwardLet us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer) Question 4 of 7 A Moving to another question will save this response. 1 6:59 & backsarrow_forward
- Assuming that at the end of the He burning phase of the stellar core (r < R_core) has no H or He or other metals and is composed completely of Carbon, X=Y=0, X_c = 1 ; The envelope above the core has a normal stellar composition ( r > R_core). Calculate the length of time in years that a 1M_sol and 10M_sol star will live on the horizontal branch or the time between the start and end of the He burning phase. Assume that the normal relationship between mass and luminosity holds for horizontal branch stars. Please be as detailed as possiblearrow_forwardA 46M Sun main sequence star loses 1 Msun of mass over 105 years. (Due to the nature of this problem, do not use rounded intermediate values in your calculations including answers submitted in WebAssign.) How many solar masses did it lose in a year? By how much will its luminosity decrease if this mass loss continues over 0.8 million years? Due to the nature of this problem, for all parts, do not use rounded intermediate values in your calculations-including answers submitted in WebAssign. To determine the number of solar masses lost per year, divide the mass lost by the number of years over which it was lost. Mlost tlost-yr Part 1 of 3 dM = dM = MSun/yrarrow_forwardA star with spectral type A0 has a surface temperature of 9600 K and a radius of 2.2 RSun. How many times more luminous is this star than the Sun? (if it is less luminous enter a number less than one) 36.854 This star has a mass of 3.3 MSun. Using the simple approximation that we made in class, what is the main sequence lifetime of this star? You may assume that the lifetime of the sun is 1010 yr.arrow_forward
- Finally estimate the lifetime of an M0 spectral type star if the total mass of the star is M = 0.51M⊙ , and it has a total luminosity L = 7.7× 10−2L⊙. Make the same assumptions as the previous two problems. How does your calculated Main Sequence lifetime for the M0 type star compare to the Main Sequence lifetime you calculated for the Sun?arrow_forwardConsider the image above of the Cassiopeia A (Cas A) supernova remnant. The supernova explosion that caused this remnant was observed on earth about 300 years ago. It is about 3000 pc away. Since that time, the shockwave from the supernova has expanded to form the roughly spherical cloud pictured above. From the center point to the edge of the cloud is about 3 pc. Compute the angular diameter of the Cas A supernova remnant as viewed from Earth. Express your answer in arcminutes.arrow_forwardHow do I go about this question?arrow_forward
- H II regions can exist only if there is a nearby star hot enough to ionize hydrogen. Hydrogen is ionized only by radiation with wavelengths shorter than 91.2 nm. What is the temperature of a star that emits its maximum energy at 91.2 nm? (Use Wien’s law from Radiation and Spectra.) Based on this result, what are the spectral types of those stars likely to provide enough energy to produce H II regions?arrow_forwardCalculate the main-sequence lifetimes of (a) a 4 ?⨀ star, and (b) a 0.75 ?⨀ star. Express the lifetimes of these stars as multiples of the Sun’s lifetime (?⨀ =1010 years), as well as in units of years.arrow_forward12: A star with spectral type A0 has a surface temperature of 9600 K and a radius of 2.2 RSun. How many times more luminous is this star than the Sun? (if it is less luminous enter a number less than one) Answer: 36.854 13:This star has a mass of 3.3 MSun. what is the main sequence lifetime of this star? You may assume that the lifetime of the sun is 1010 yr. Please answer question 13 thank you.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning