![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_largeCoverImage.gif)
Review. Two boys are sliding toward each other on a frictionless, ice-covered parking lot. Jacob, mass 45.0 kg, is gliding to the right at 8.00 m/s, and Ethan, mass 31.0 kg, is gliding to the left at 11.0 m/s along the same line. When they meet, they grab each other and hang on. (a) What is their velocity immediately thereafter? (b) What fraction of their original kinetic energy is still mechanical energy after their collision? That was so much fun that the boys repeat the collision with the same original velocities, this time moving along parallel lines 1.20 m apart. At closest approach, they lock arms and start rotating about their common center of mass. Model the boys as particles and their arms as a cord that does not stretch. (c) Find the velocity of their center of mass. (d) Find their angular speed. (e) What fraction of their original kinetic energy is still mechanical energy after they link arms? (f) Why are the answers to parts (b) and (e) so different?
(a)
![Check Mark](/static/check-mark.png)
The velocity of Jacob and Ethan immediate thereafter.
Answer to Problem 38AP
The velocity of Jacob and Ethan immediate thereafter is
Explanation of Solution
The mass of Jacob is
The momentum is conserved in the isolated system of two boys then,
Here,
Substitute
Conclusion:
Therefore, the velocity of Jacob and Ethan immediate thereafter is
(b)
![Check Mark](/static/check-mark.png)
The fraction of their original kinetic energy is still mechanical energy after their collision.
Answer to Problem 38AP
The fraction of their original kinetic energy is still mechanical energy after their collision is
Explanation of Solution
The formula to calculate initial kinetic energy of the system is,
Substitute
The formula to calculate final kinetic energy of the system is,
Substitute
The formula to calculate fraction of kinetic energy is,
Conclusion:
Therefore, the fraction of their original kinetic energy is still mechanical energy after their collision is
(c)
![Check Mark](/static/check-mark.png)
The velocity of the centre of mass of Jacob and Ethan.
Answer to Problem 38AP
The velocity of the centre of mass of Jacob and Ethan is
Explanation of Solution
The velocity of the centre of mass of Jacob and Ethan is still remains same as calculated in part (a) because the conservation of momentum calculations will be same as part (a).
Then, the velocity of the centre of mass of Jacob and Ethan is,
Conclusion:
Therefore, the velocity of the centre of mass of Jacob and Ethan is
(d)
![Check Mark](/static/check-mark.png)
The angular speed of Jacob and Ethan.
Answer to Problem 38AP
The angular speed of Jacob and Ethan is
Explanation of Solution
The position of the centre of mass of the boys is,
Substitute
The Jacob is
The angular momentum is,
Substitute
Conclusion:
Therefore, the angular speed of Jacob and Ethan is
(e)
![Check Mark](/static/check-mark.png)
The fraction of their original kinetic energy that is still mechanical energy after they link arms.
Answer to Problem 38AP
The fraction of their original kinetic energy that is still mechanical energy after they link arms is
Explanation of Solution
Refer to the section 1 of part (b), the initial kinetic energy is,
The formula to calculate final kinetic energy of the system is,
Substitute
The fraction of kinetic energy is,
Conclusion:
Therefore, the fraction of their original kinetic energy is still mechanical energy after they link arms is
(f)
![Check Mark](/static/check-mark.png)
The reason for the answer of part (b) and part (e) is so different.
Answer to Problem 38AP
The answer of part (b) and part (e) is so different because the head on collision between similarly sized objects are grossly inefficient.
Explanation of Solution
The deformation is a process in which one form of energy changed into the other form. The head on collision between similarly sized objects are grossly inefficient. So the answers are so different. If the two kids were the same size and had the same velocity; conservation of the momentum states that they lose all their kinetic energy. On the other hand, glancing blows like this one allow a lot of energy to be transferred into the rotational kinetic energy, causing much less energy to be lost on impact.
Conclusion:
Therefore, the answer of part (b) and part (e) is so different because the head on collision between similarly sized objects are grossly inefficient.
Want to see more full solutions like this?
Chapter 11 Solutions
Physics for Scientists and Engineers
- No chatgpt plsarrow_forwardhelp me with the experimental set up for the excel i did. the grapharrow_forwardWhich of the following best describes how to calculate the average acceleration of any object? Average acceleration is always halfway between the initial acceleration of an object and its final acceleration. Average acceleration is always equal to the change in velocity of an object divided by the time interval. Average acceleration is always equal to the displacement of an object divided by the time interval. Average acceleration is always equal to the change in speed of an object divided by the time interval.arrow_forward
- The figure shows the velocity versus time graph for a car driving on a straight road. Which of the following best describes the acceleration of the car? v (m/s) t(s) The acceleration of the car is negative and decreasing. The acceleration of the car is constant. The acceleration of the car is positive and increasing. The acceleration of the car is positive and decreasing. The acceleration of the car is negative and increasing.arrow_forwardWhich figure could represent the velocity versus time graph of a motorcycle whose speed is increasing? v (m/s) v (m/s) t(s) t(s)arrow_forwardUnlike speed, velocity is a the statement? Poisition. Direction. Vector. Scalar. quantity. Which one of the following completesarrow_forward
- No chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward3.63 • Leaping the River II. A physics professor did daredevil stunts in his spare time. His last stunt was an attempt to jump across a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at 53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower than the top of the ramp. The river itself was 100 m below the ramp. Ignore air resistance. (a) What should his speed have been at the top of the ramp to have just made it to the edge of the far bank? (b) If his speed was only half the value found in part (a), where did he land? Figure P3.63 53.0° 100 m 40.0 m→ 15.0 marrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- You throw a small rock straight up from the edge of a highway bridge that crosses a river. The rock passes you on its way down, 5.00 s after it was thrown. What is the speed of the rock just before it reaches the water 25.0 m below the point where the rock left your hand? Ignore air resistance.arrow_forwardHelp me make a visualize experimental setup using a word document. For the theory below.arrow_forwardHow to solve this, given answerarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)