
(a)
Find the average power delivered to each load, the apparent power supplied by the source, and the power factor of the combined loads for the circuit in Figure 11.43 in the textbook.
(a)

Answer to Problem 35E
The average power delivered to
Explanation of Solution
Given data:
Refer to Figure 11.43 in the textbook for the given circuit.
Formula used:
Write the expression for average power delivered to load as follows:
Here,
Write the expression for rms current in the circuit as follows:
Here,
Write the expression for total impedance in the given circuit as follows:
Write the expression for rms voltage across load as follows:
Write the expression for complex power supplied by the source as follows:
Write the expression for power factor of the combined loads as follows:
Calculation:
From Equation (3), substitute
Substitute
Simplify the expression as follows:
Modify the expression in Equation (4) for the voltage across the load
Substitute
Modify the expression in Equation (1) for the average power delivered to the load
Substitute 48.041 V for
Modify the expression in Equation (4) for the voltage across the load
Substitute
Modify the expression in Equation (1) for the average power delivered to the load
Substitute 75.493 V for
Substitute
Find the apparent power supplied by the source from the complex power as follows:
Substitute
If the imaginary part of the complex power (reactive power) is positive value, then the load has lagging power factor. If the imaginary part is negative value, then the load has leading power factor.
As the imaginary part of the given complex power is positive value, the power factor is lagging power factor.
Conclusion:
Thus, the average power delivered to
(b)
Find the average power delivered to each load, the apparent power supplied by the source, and the power factor of the combined loads for the circuit in Figure 11.43 in the textbook.
(b)

Answer to Problem 35E
The average power delivered to
Explanation of Solution
Given data:
Calculation:
Substitute
Substitute
Substitute 29.5202 V for
Substitute
Substitute 89.7812 V for
Substitute
Find the apparent power supplied by the source from the complex power as follows:
Substitute
As the imaginary part of the given complex power is negative value, the power factor is leading power factor.
Conclusion:
Thus, the average power delivered to
(c)
Find the average power delivered to each load, the apparent power supplied by the source, and the power factor of the combined loads for the circuit in Figure 11.43 in the textbook.
(c)

Answer to Problem 35E
The average power delivered to
Explanation of Solution
Given data:
Calculation:
Substitute
Substitute
Substitute 69 V for
Substitute
Substitute 51.75 V for
Substitute
Find the apparent power supplied by the source from the complex power as follows:
Substitute
As the imaginary part of the given complex power is positive value, the power factor is lagging power factor.
Conclusion:
Thus, the average power delivered to
Want to see more full solutions like this?
Chapter 11 Solutions
ENGINEERING CIRCUIT...(LL)>CUSTOM PKG.<
- i need helppp pleasearrow_forward1) (2pts) If you know you have a bad clock (lots of jitter) and you are not bandwidth constrained, you should: (Circle the correct answer) a) Set the roll off factor to zero b) Set the roll off factor to ½ c) Set the roll off factor to one 2) (2pts) Short answer: Why do we use M-ary modulation? 3) (4 pts) Short answer: The application engineer comes to your desk and says that the error rate is too high and must be reduced for the application to function correctly. The system is battery operated. What do you tell them is the trade- off?arrow_forwardi need helppp pleasearrow_forward
- 5) (20 pts) You are testing a system that has pulse shape shown below for Logic 1 and Logic 0. You are connecting the transmitter to an oscilloscope which is set up to display the resulting eye-diagram of the system. Sketch what you would expect to see on the oscilloscope for an ideal system (an ideal system is noiseless and jitter free) Logic 1 3 volts Time 0 Ть Logic 0 0 Ть Time -2 voltsarrow_forward4. (20 pts) You are given a channel with the following impulse response. Determine the set of equations that will be used to determine the coefficients of a Zero-Forcing Linear Equalizer. DO NOT SOLVE FOR THE COEFFICIENTS. Just show the set of equation that would be used to solved the coefficients. 0 m≤-31 -0.33 m = -2 .25 m = -1 h(mb) = 1 m = 0 -0.45 m = 1 0.5 m = 2 0 m≥3arrow_forwardI need help understanding part B. See attached photo.arrow_forward
- i need helppp pleasearrow_forward3) (30pts) An application requires a bit rate of 18.2 Kbps and an error rate of less than 104. The channel has a noise power spectral density of 10-8 W/Hz. The channel attenuates the power in the signal by 5 dB. The system uses binary PAM baseband digital communication system with the minimum required bandwidth and a roll-off factor of 0.319. a) (10 pts) What is the estimated minimum required signal power (Pt) at the transmitter?arrow_forwardi need helppp pleasearrow_forward
- i need helppp pleasearrow_forwardi need helppp pleasearrow_forward1a) (5pts) Suppose X is a Gaussian random variable with a mean of 2 and a variance of 9. What is the probability X is greater than 2. 1b) (5pts) Suppose X is a Gaussian random variable with a mean of 2 and a variance of 9. Using the Q-function, determine Prob{-4-2} Leave your answer in terms of the Q-function; do not evaluate it.arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





