(a)
Find the average power delivered to each load, the apparent power supplied by the source, and the power factor of the combined loads for the circuit in Figure 11.43 in the textbook.
(a)
Answer to Problem 35E
The average power delivered to
Explanation of Solution
Given data:
Refer to Figure 11.43 in the textbook for the given circuit.
Formula used:
Write the expression for average power delivered to load as follows:
Here,
Write the expression for rms current in the circuit as follows:
Here,
Write the expression for total impedance in the given circuit as follows:
Write the expression for rms voltage across load as follows:
Write the expression for complex power supplied by the source as follows:
Write the expression for power factor of the combined loads as follows:
Calculation:
From Equation (3), substitute
Substitute
Simplify the expression as follows:
Modify the expression in Equation (4) for the voltage across the load
Substitute
Modify the expression in Equation (1) for the average power delivered to the load
Substitute 48.041 V for
Modify the expression in Equation (4) for the voltage across the load
Substitute
Modify the expression in Equation (1) for the average power delivered to the load
Substitute 75.493 V for
Substitute
Find the apparent power supplied by the source from the complex power as follows:
Substitute
If the imaginary part of the complex power (reactive power) is positive value, then the load has lagging power factor. If the imaginary part is negative value, then the load has leading power factor.
As the imaginary part of the given complex power is positive value, the power factor is lagging power factor.
Conclusion:
Thus, the average power delivered to
(b)
Find the average power delivered to each load, the apparent power supplied by the source, and the power factor of the combined loads for the circuit in Figure 11.43 in the textbook.
(b)
Answer to Problem 35E
The average power delivered to
Explanation of Solution
Given data:
Calculation:
Substitute
Substitute
Substitute 29.5202 V for
Substitute
Substitute 89.7812 V for
Substitute
Find the apparent power supplied by the source from the complex power as follows:
Substitute
As the imaginary part of the given complex power is negative value, the power factor is leading power factor.
Conclusion:
Thus, the average power delivered to
(c)
Find the average power delivered to each load, the apparent power supplied by the source, and the power factor of the combined loads for the circuit in Figure 11.43 in the textbook.
(c)
Answer to Problem 35E
The average power delivered to
Explanation of Solution
Given data:
Calculation:
Substitute
Substitute
Substitute 69 V for
Substitute
Substitute 51.75 V for
Substitute
Find the apparent power supplied by the source from the complex power as follows:
Substitute
As the imaginary part of the given complex power is positive value, the power factor is lagging power factor.
Conclusion:
Thus, the average power delivered to
Want to see more full solutions like this?
Chapter 11 Solutions
ENGINEERING CIRCUIT...(LL)>CUSTOM PKG.<
- Do by pen and paper not using AIarrow_forwardWhat is the zero potential surface of the 2-wire transmission line in the figure shown?arrow_forwardB) Use the results of the autocorrelation function R(T) of the waveform x(t) = A cos(2 fot+o) to find the autocorrelation function R(T) and the average normalized power Py of the waveform y(t) = 5 cos 5t + 10 cos 10t. 12+13 marksarrow_forward
- Q2: Obtain the y parameters of the two-port network in the figure below 10 50 50 ww 0.5V2 20 V2 01arrow_forwardProblem 3 In a broadcasting communication system, the transmitter power Pt is 40kW, the channel attenuation is 80dB, and the noise power spectral density S, (f) is 10-10 W/Hz. The message signal has a bandwidth W of 104 Hz. a. Find the output SNR (2) if the modulation is DSB-SC AM b. Find the output SNR if the modulation is SSB AM Narrow_forwardA random experiment consists of drawing a ball from a box that contains 4 red balls (numbered 1,2,3,4) and 3 black balls numbered (1,2,3). State what outcomes are contained in the following events: a. E₁ = The event that the only balls with an even number are selected b. E2 = The event that only red balls with a number greater than 1 are selected c. E3 The event that only balls with a number less than 3 are selected For reference, an example of a response for such questions is as follows: = Q: E6 The event that only balls with an odd number are selected A: E6 = {R1, R3, B1, B3}. Here R₁ = event that Red ball with number 1 is selected, B3 = Black ball with number 3 is selected.. and so on..arrow_forward
- Problem 2 The noise voltage in an electric circuit is modeled as a Gaussian random variable X with a mean equal to zero (m = 0) and a variance equal to 108 (σ² = 10-8). a. What is the probability that the value of the noise exceeds 10-4? P(X > 10-4) = ? b. What is the probability that the noise value is between -2 × 10-4 and 10-4? P(-2 × 10 4 x < 10-4) = ?arrow_forwardPlease solve it without artificial intelligence on paper and penarrow_forwardQ3: Obtain the h parameters of the two-port in the figure below 300 Ω www 10 Ω ww ww 100 Ω 50 Ω www 10Varrow_forward
- line code QPSK modulated signal. By The information in an analog waveform whose maximum frequency f8000 Hz is The quantization distortion nnst not sisted in, a 10 levd PAM exceed +1% of the peak-to-peak analog signal.arrow_forwardQ4: Obtain the ABCD parameters for the network in the figure shown below 60 ΙΩ www V₁ 20 +1 ΔΩ ww 5Vxarrow_forward1) What is the minimum number of bits per sample that should be used in this PAM transmission system? 2) What is the minimum required sampling rate, and what is the resulting bit rate? 3) What is the 16-ary PAM symbol transmission rate?arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,