Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 32P
(a)
To determine
The new time period of rotation.
(b)
To determine
Weather the angular momentum of puck-putty system about the axis of rotation is constant or not.
(c)
To determine
Weather the momentum of the system is constant in the process of the putty sticking to the pick or not.
(d)
To determine
The mechanical energy of the system is constant or not.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
To test the speed of a bullet, you create a pendulum by attaching a 5.80 kg wooden block to the bottom of a 1.60 m long, 0.800 kg rod. The top of the rod is attached to a frictionless axle and is free to rotate about that point.
You fire a 10 g bullet into the block, where it sticks, and the pendulum swings out to an angle of 39.0°. What was the speed of the bullet?
QIIII: A thin uniform rod of mass Mr and length L is suspended from the ceiling and mounted on a horizontal frictionless axle at the top. The rod is initially at rest in its equilibrium position when a ball of play dough, of mass mb, strikes the rod at its lower end and remains stuck to the rod. The sticky ball is thrown with an initial speed v0 at a 60 degree angle from the horizontal direction, and strikes the rod when it reaches the top of its trajectory, as shown in Fig.4. The acceleration due to gravity has magnitude g and air resistance is negligible.
a. Determine the velocity of the ball of play dough right before it sticks to the rod. Use the x- y coordinate system defined in Fig.4.
b. Determine the angular velocity of the rod+ball system right after the collision. Take counterclockwise as positive.
c. - Establish the differential equation satisfied by the rod+ball system after the collision and determine the angular frequency of the system. You may assume that the small…
As shown represents a small, flat puck with mass m = 2.40 kg sliding on a frictionless, horizontal surface. It is held in a circular orbit about a fixed axis by a rod with negligible mass and length R = 1.50 m, pivoted at one end. Initially, the puck has a speed of υ = 5.00 m/s. A 1.30-kg ball of putty is dropped vertically onto the puck from a small distance above it and immediately sticks to the puck. (a) What is the new period of rotation? (b) Is the angular momentum of the puck–putty system about the axis of rotation constant in this process? (c) Is the momentum of the system constant in the process of the putty sticking to the puck? (d) Is the mechanical energy of the system constant in the process?
Chapter 11 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 11.1 - Which of the following statements about the...Ch. 11.2 - Recall the skater described at the beginning of...Ch. 11.3 - A solid sphere and a hollow sphere have the same...Ch. 11.4 - A competitive diver leaves the diving board and...Ch. 11 - Prob. 1OQCh. 11 - Prob. 2OQCh. 11 - Prob. 3OQCh. 11 - Prob. 4OQCh. 11 - Prob. 5OQCh. 11 - Prob. 6OQ
Ch. 11 - Prob. 7OQCh. 11 - Prob. 8OQCh. 11 - Prob. 1CQCh. 11 - Prob. 2CQCh. 11 - Prob. 3CQCh. 11 - Prob. 4CQCh. 11 - Prob. 5CQCh. 11 - In some motorcycle races, the riders drive over...Ch. 11 - Prob. 7CQCh. 11 - Prob. 8CQCh. 11 - Prob. 9CQCh. 11 - Prob. 10CQCh. 11 - Prob. 11CQCh. 11 - Prob. 1PCh. 11 - The displacement vectors 42.0 cm at 15.0 and 23.0...Ch. 11 - Prob. 3PCh. 11 - Prob. 4PCh. 11 - Prob. 5PCh. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - A particle is located at a point described by the...Ch. 11 - Two forces F1 and F2 act along the two sides of an...Ch. 11 - A student claims that he has found a vector A such...Ch. 11 - Prob. 11PCh. 11 - A 1.50-kg particle moves in the xy plane with a...Ch. 11 - Prob. 13PCh. 11 - Heading straight toward the summit of Pikes Peak,...Ch. 11 - Review. A projectile of mass m is launched with an...Ch. 11 - Prob. 16PCh. 11 - A particle of mass m moves in a circle of radius R...Ch. 11 - Prob. 18PCh. 11 - Prob. 19PCh. 11 - A 5.00-kg particle starts from the origin at time...Ch. 11 - A ball having mass m is fastened at the end of a...Ch. 11 - Prob. 22PCh. 11 - Prob. 23PCh. 11 - Show that the kinetic energy of an object rotating...Ch. 11 - A uniform solid disk of mass m = 3.00 kg and...Ch. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - A 60.0-kg woman stands at the western rim of a...Ch. 11 - Prob. 34PCh. 11 - A uniform cylindrical turntable of radius 1.90 m...Ch. 11 - Prob. 36PCh. 11 - A wooden block of mass M resting on a...Ch. 11 - Prob. 38PCh. 11 - A wad of sticky clay with mass m and velocity vi...Ch. 11 - Prob. 40PCh. 11 - Prob. 41PCh. 11 - Prob. 42PCh. 11 - The angular momentum vector of a precessing...Ch. 11 - A light rope passes over a light, frictionless...Ch. 11 - Prob. 45APCh. 11 - Prob. 46APCh. 11 - We have all complained that there arent enough...Ch. 11 - Prob. 48APCh. 11 - A rigid, massless rod has three particles with...Ch. 11 - Prob. 50APCh. 11 - Prob. 51APCh. 11 - Two children are playing on stools at a restaurant...Ch. 11 - Prob. 53APCh. 11 - Prob. 54APCh. 11 - Two astronauts (Fig. P11.39), each having a mass...Ch. 11 - Two astronauts (Fig. P11.39), each having a mass...Ch. 11 - Native people throughout North and South America...Ch. 11 - Prob. 58APCh. 11 - Global warming is a cause for concern because even...Ch. 11 - The puck in Figure P11.46 has a mass of 0.120 kg....Ch. 11 - Prob. 61CPCh. 11 - Prob. 62CPCh. 11 - Prob. 63CPCh. 11 - A solid cube of wood of side 2a and mass M is...
Knowledge Booster
Similar questions
- As shown in Figure P8.20, a bullet of mass m and speed v passes completely through a pendulum bob of mass M. The bullet emerges with a speed of v/2. The pendulum bob is suspended by a stiff rod (not a string) of length , and negligible mass. What is the minimum value of v such that the pendulum bob will barely swing through a complete vertical circle? Figure P8.20arrow_forwardQ4: A thin uniform rod of mass Mr and length L is suspended from the ceiling and mounted on a horizontal frictionless axle at the top. The rod is initially at rest in its equilibrium position when a ball of play dough, of mass mb, strikes the rod at its lower end and remains stuck to the rod. The sticky ball is thrown with an initial speed v0 at a 60 degree angle from the horizontal direction, and strikes the rod when it reaches the top of its trajectory, as shown in Fig.4. The acceleration due to gravity has magnitude g and air resistance is negligible. a. Determine the velocity of the ball of play dough right before it sticks to the rod. Use the x- y coordinate system defined in Fig.4. b. Determine the angular velocity of the rod+ball system right after the collision. Take counterclockwise as positive. c. - Establish the differential equation satisfied by the rod+ball system after the collision and determine the angular frequency of the system. You may assume that the small…arrow_forwardA 4.20 kg cylindrical rod of length 2.00 m is suspended from a horizontal bar so it is free to swing about that end. A solid sphere of mass 0.25 kg is thrown horizontally with a speed v₁ = 17.0 m/s to hit the rod at the point A one-fifth of the way up from the bottom of the rod. The sphere bounces back horizontally with a speed V₂ = 9.50 m/s, while the rod swings to the right through an angle before swinging back toward its original position. What is the angular velocity, in rad/s, of the rod immediately after the collision? rad/s A (a) (b)arrow_forward
- A 3.0-kg mass is sliding on a horizontal frictionless surface with a speed of V=3.0 m/s when it collides with a 1.0-kg mass initially at rest as shown in the figure. The masses stick together and slide up a frictionless circular track of radius 0.40 m, as the drawing below shows. To what maximum height, h, above the horizontal surface will the masses slide. 7. 040 marrow_forwardThe top edge of a rod of mass 2.80 kg is pivoted to a point on the ceiling. The rod is free to rotate about this pivot and the length of the rod is 40.0 cm. The rod is pulled to the right until it makes 27.0 degree with the vertical and then released from rest. At the same time a clay ball of mass 350 grams is moving to the right with a speed 160 cm/s. As soon as the rod reaches the vertical position (moving to the left), the clay ball hits the rod at the bottom and sticks to it. o search a. b. Determine the final angular velocity of the clay+rod system. 116 min 42 secs Find out the magnitude angular displacement of the clay+rod system after the impact BIUGG Next TE 24°C Partly cloudyarrow_forward18° The figure shows a thin rod, of length L = 2.20 m and negligible mass, that can pivot about one end to rotate in a vertical circle. A heavy ball of mass m =.10 kg is attached to the other end. The rod is pulled aside to angle 0 = 18 ° and released with initial velocity 0. (a) What is the speed of the ball at the lowest point? (b) Does the speed increase, decrease, or remain the same if the mass is increased? 8.10 I.arrow_forward
- answer it..no handwrittenarrow_forwardA 0.196 N bullet has 9312.25 J of translational Kinetic energy. What is the magnitude of the bullet's translational momentum?arrow_forwardA cart with mass m2 = 13.5 kg is rolling to the left along a horizontal plane with a constant speed v2 = 2.86 m/s . A parcel of mass m1 = 0.707 kg slides down a chute at a height of h = 6.00 m and lands inside the cart. The chute is inclined at an angle θ=θ= 29.0o to the horizontal. The parcel has a speed of v1 = 5.60 m/s when it just left the chute. What is the speed and direction of the cart with the parcel inside right after the parcel falls onto the cart? Give your answer in units of m/s. Use the convention that speed going to the right is positive.arrow_forward
- During July 1994 the comet Shoemaker-Levy 9 smashed into Jupiter in a spectacular fashion. The comet actually consisted of 21 distinct pieces, the largest of which had a mass of approximately 4.0 x 1012 kg and a speed of 6.0 x 104 m/s. Jupiter, the largest planet in the solar system, has a mass of 1.9 x 1027 kg and an orbital speed of 1.3 x 104 m/s. If this piece of the comet had hit Jupiter head-on, what would have been the change (magnitude only) in Jupiter's orbital speed (not its final speed)? Number i Save for Later Units Attempts: 0 of 1 used Submit Answerarrow_forwardJenna releases a box crate that has a mass of m = 5 kilograms on her physics contraption. The box crate slides down a smooth slide surface through a vertical height distance of h=85 cm and then collides and sticks to the lower end of a vertical pole that has a of mass M=10.5 kg and length 1=2.00m. Right after the impact, the pole pivots about a point near its upper end through an angle (theta) before it stops momentarily. See the image given to visualize Janna's system. Please Figure out the following. Explain your steps in detail. a. The speed of the box crate just before it hits the pole b. The angular speed of the pole just after impact c. The angle (theta) through which the pole pivots 0 Jenna and her physics contraptionarrow_forwardA 0.5-kg stone slides down a frictionless bowl, starting from rest at the rim. The bowl itself is a hemisphere of radius 0.100 m. Just as the stone reaches the bottom of the bowl, how fast is it moving?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning