
The increase in rotational kinetic energy.

Answer to Problem 1OQ
Option (b) the rotational kinetic energy increases by factor
Explanation of Solution
Write the expression for
Here,
Write the expression for rotational kinetic energy of an object.
Here,
Conclusion:
Consider an ice skater is behaves like isolated system.
For conservative angular momentum when moment of inertia decreases by factor
Substitute
From the above expression clearly shows the rotational kinetic energy becomes double.
Thus, the rotational kinetic energy increases by factor
When M.O.I decreases by four times than the rotational kinetic energy increases by factor
When moment of inertia decreases than the rotational kinetic energy can’t be constant so option (c) is incorrect.
When moment of inertia decreases than the rotational kinetic energy can’t decreases so option (d) is incorrect.
When moment of inertia decreases than the rotational kinetic energy can’t decreases so option (e) is incorrect.
Want to see more full solutions like this?
Chapter 11 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- An object is placed 24.1 cm to the left of a diverging lens (f = -6.51 cm). A concave mirror (f= 14.8 cm) is placed 30.2 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forwardPls help ASAParrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





