
Business Math (11th Edition)
11th Edition
ISBN: 9780134496436
Author: Cheryl Cleaves, Margie Hobbs, Jeffrey Noble
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1.1, Problem 12SE
To determine
The number which is described in words “Three hundred million, seven hundred sixty thousand, and five hundred twelve”.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Can you tell the answer
ce-
216
Answer the following, using the figures and
tables from the age versus bone loss data in
2010 Questions 2 and 12:
a. For what ages is it reasonable to use the
regression line to predict bone loss?
b. Interpret the slope in the context of this
wolf X
problem.
y
min ball bas
oft
c. Using the data from the study, can you
say that age causes bone loss?
srls to sqota bri
vo X 1931s
aqsini-Y ST.0 0 Isups
Iq nsalst ever tom vam noboslios tsb
a ti segood insvla villemari
aixs-Yedi
120
110
110
100
90
80
Total Score
Scatterplot of Total Score vs. Putts
grit
bas
70-
20
25
30
35
40
45
50
Putts
Chapter 1 Solutions
Business Math (11th Edition)
Ch. 1.1 - Prob. 1-1SCCh. 1.1 - Prob. 1-2SCCh. 1.1 - Prob. 1-3SCCh. 1.1 - Prob. 1-4SCCh. 1.1 - Prob. 2-1SCCh. 1.1 - Prob. 2-2SCCh. 1.1 - Prob. 2-3SCCh. 1.1 - Prob. 2-4SCCh. 1.1 - Prob. 3-1SCCh. 1.1 - Prob. 3-2SC
Ch. 1.1 - Prob. 3-3SCCh. 1.1 - Prob. 3-4SCCh. 1.1 - Prob. 3-5SCCh. 1.1 - Prob. 3-6SCCh. 1.1 - Prob. 4-1SCCh. 1.1 - Prob. 4-2SCCh. 1.1 - Prob. 4-3SCCh. 1.1 - Prob. 4-4SCCh. 1.1 - Prob. 1SECh. 1.1 - Prob. 2SECh. 1.1 - Prob. 3SECh. 1.1 - Prob. 4SECh. 1.1 - Prob. 5SECh. 1.1 - Prob. 6SECh. 1.1 - Prob. 7SECh. 1.1 - Prob. 8SECh. 1.1 - Prob. 9SECh. 1.1 - Prob. 10SECh. 1.1 - Prob. 11SECh. 1.1 - Prob. 12SECh. 1.1 - Prob. 13SECh. 1.1 - Prob. 14SECh. 1.1 - Prob. 15SECh. 1.1 - Prob. 16SECh. 1.1 - Prob. 17SECh. 1.1 - Prob. 18SECh. 1.1 - Prob. 19SECh. 1.1 - Prob. 20SECh. 1.1 - Prob. 21SECh. 1.1 - Prob. 22SECh. 1.1 - Prob. 23SECh. 1.1 - Prob. 24SECh. 1.1 - Prob. 25SECh. 1.1 - Prob. 26SECh. 1.2 - Prob. 1-1SCCh. 1.2 - Prob. 1-2SCCh. 1.2 - Prob. 1-3SCCh. 1.2 - Prob. 1-4SCCh. 1.2 - Prob. 1-5SCCh. 1.2 - Prob. 1-6SCCh. 1.2 - Prob. 1-7SCCh. 1.2 - Prob. 1-8SCCh. 1.2 - Prob. 1-9SCCh. 1.2 - Prob. 1-10SCCh. 1.2 - Prob. 1-11SCCh. 1.2 - Prob. 1-12SCCh. 1.2 - Prob. 2-1SCCh. 1.2 - Prob. 2-2SCCh. 1.2 - Prob. 2-3SCCh. 1.2 - Prob. 2-4SCCh. 1.2 - Prob. 2-5SCCh. 1.2 - Prob. 2-6SCCh. 1.2 - Prob. 3-1SCCh. 1.2 - Prob. 3-2SCCh. 1.2 - Prob. 3-3SCCh. 1.2 - Prob. 3-4SCCh. 1.2 - Prob. 3-5SCCh. 1.2 - Prob. 3-6SCCh. 1.2 - Prob. 3-7SCCh. 1.2 - Prob. 3-8SCCh. 1.2 - Prob. 3-9SCCh. 1.2 - Prob. 3-10SCCh. 1.2 - Prob. 4-1SCCh. 1.2 - Prob. 4-2SCCh. 1.2 - Prob. 4-3SCCh. 1.2 - Prob. 4-4SCCh. 1.2 - Prob. 4-5SCCh. 1.2 - Prob. 4-6SCCh. 1.2 - Prob. 4-7SCCh. 1.2 - Prob. 4-8SCCh. 1.2 - Prob. 4-9SCCh. 1.2 - Prob. 4-10SCCh. 1.2 - Prob. 5-1SCCh. 1.2 - Prob. 5-2SCCh. 1.2 - Prob. 5-3SCCh. 1.2 - Prob. 5-4SCCh. 1.2 - Prob. 1SECh. 1.2 - Prob. 2SECh. 1.2 - Prob. 3SECh. 1.2 - Prob. 4SECh. 1.2 - Prob. 5SECh. 1.2 - Prob. 6SECh. 1.2 - Prob. 7SECh. 1.2 - Prob. 8SECh. 1.2 - Prob. 9SECh. 1.2 - Prob. 10SECh. 1.2 - Prob. 11SECh. 1.2 - Prob. 12SECh. 1.2 - Prob. 13SECh. 1.2 - Prob. 14SECh. 1.2 - Prob. 15SECh. 1.2 - Prob. 16SECh. 1.2 - Prob. 17SECh. 1.2 - Prob. 18SECh. 1.2 - Prob. 19SECh. 1.2 - Prob. 20SECh. 1.2 - Prob. 21SECh. 1.2 - Prob. 22SECh. 1.2 - Prob. 23SECh. 1.2 - Prob. 24SECh. 1.2 - Prob. 25SECh. 1.2 - Prob. 26SECh. 1.2 - Prob. 27SECh. 1.2 - Prob. 28SECh. 1.2 - Prob. 29SECh. 1.2 - Prob. 30SECh. 1.2 - Prob. 31SECh. 1.2 - Prob. 32SECh. 1.2 - Prob. 33SECh. 1.2 - Prob. 34SECh. 1.2 - Prob. 35SECh. 1.2 - Prob. 36SECh. 1.2 - Prob. 37SECh. 1.2 - Prob. 38SECh. 1.2 - Prob. 39SECh. 1.2 - Prob. 40SECh. 1.2 - Prob. 41SECh. 1.2 - Prob. 42SECh. 1.2 - Prob. 43SECh. 1.2 - Prob. 44SECh. 1.2 - Prob. 45SECh. 1.2 - Prob. 46SECh. 1.2 - Prob. 47SECh. 1.2 - Prob. 48SECh. 1.2 - Prob. 49SECh. 1.2 - Prob. 50SECh. 1.2 - Prob. 51SECh. 1.2 - Prob. 52SECh. 1.2 - Prob. 53SECh. 1.2 - Prob. 54SECh. 1.2 - Prob. 55SECh. 1.2 - Prob. 56SECh. 1 - Prob. 1ESCh. 1 - Prob. 2ESCh. 1 - Prob. 3ESCh. 1 - Prob. 4ESCh. 1 - Prob. 5ESCh. 1 - Prob. 6ESCh. 1 - Prob. 7ESCh. 1 - Prob. 8ESCh. 1 - Prob. 9ESCh. 1 - Prob. 10ESCh. 1 - Prob. 11ESCh. 1 - Prob. 12ESCh. 1 - Prob. 13ESCh. 1 - Prob. 14ESCh. 1 - Prob. 15ESCh. 1 - Prob. 16ESCh. 1 - Prob. 17ESCh. 1 - Prob. 18ESCh. 1 - Prob. 19ESCh. 1 - Prob. 20ESCh. 1 - Prob. 21ESCh. 1 - Prob. 22ESCh. 1 - Prob. 23ESCh. 1 - Prob. 24ESCh. 1 - Prob. 25ESCh. 1 - Prob. 26ESCh. 1 - Prob. 27ESCh. 1 - Prob. 28ESCh. 1 - Prob. 29ESCh. 1 - Prob. 30ESCh. 1 - Prob. 31ESCh. 1 - Prob. 32ESCh. 1 - Prob. 33ESCh. 1 - Prob. 34ESCh. 1 - Prob. 35ESCh. 1 - Prob. 36ESCh. 1 - Prob. 37ESCh. 1 - Prob. 38ESCh. 1 - Prob. 39ESCh. 1 - Prob. 40ESCh. 1 - Prob. 41ESCh. 1 - Prob. 42ESCh. 1 - Prob. 43ESCh. 1 - Prob. 44ESCh. 1 - Prob. 45ESCh. 1 - Prob. 46ESCh. 1 - Prob. 47ESCh. 1 - Prob. 48ESCh. 1 - Prob. 49ESCh. 1 - Prob. 50ESCh. 1 - Prob. 51ESCh. 1 - Prob. 52ESCh. 1 - Prob. 53ESCh. 1 - Prob. 54ESCh. 1 - Prob. 55ESCh. 1 - Prob. 56ESCh. 1 - Prob. 57ESCh. 1 - Prob. 58ESCh. 1 - Prob. 59ESCh. 1 - Prob. 60ESCh. 1 - Prob. 61ESCh. 1 - Prob. 62ESCh. 1 - Prob. 63ESCh. 1 - Prob. 64ESCh. 1 - Prob. 65ESCh. 1 - Prob. 66ESCh. 1 - Prob. 67ESCh. 1 - Prob. 68ESCh. 1 - Prob. 69ESCh. 1 - Prob. 70ESCh. 1 - Prob. 71ESCh. 1 - Prob. 72ESCh. 1 - Prob. 73ESCh. 1 - Prob. 74ESCh. 1 - Prob. 75ESCh. 1 - Prob. 76ESCh. 1 - Prob. 77ESCh. 1 - Prob. 78ESCh. 1 - Prob. 79ESCh. 1 - Prob. 80ESCh. 1 - Prob. 81ESCh. 1 - Prob. 82ESCh. 1 - Prob. 83ESCh. 1 - Prob. 84ESCh. 1 - Prob. 85ESCh. 1 - Prob. 86ESCh. 1 - Prob. 87ESCh. 1 - Prob. 88ESCh. 1 - Prob. 89ESCh. 1 - Prob. 1PTCh. 1 - Prob. 2PTCh. 1 - Prob. 3PTCh. 1 - Prob. 4PTCh. 1 - Prob. 5PTCh. 1 - Prob. 6PTCh. 1 - Prob. 7PTCh. 1 - Prob. 8PTCh. 1 - Prob. 9PTCh. 1 - Prob. 10PTCh. 1 - Prob. 11PTCh. 1 - Prob. 12PTCh. 1 - Prob. 13PTCh. 1 - Prob. 14PTCh. 1 - Prob. 15PTCh. 1 - Prob. 16PTCh. 1 - Prob. 17PTCh. 1 - Prob. 18PTCh. 1 - Prob. 19PTCh. 1 - Prob. 20PTCh. 1 - Prob. 21PTCh. 1 - Prob. 22PTCh. 1 - Prob. 23PTCh. 1 - Prob. 24PTCh. 1 - Prob. 25PTCh. 1 - Prob. 26PTCh. 1 - Prob. 27PTCh. 1 - Prob. 28PTCh. 1 - Prob. 29PTCh. 1 - Prob. 30PTCh. 1 - Prob. 31PTCh. 1 - Prob. 32PTCh. 1 - Prob. 1CTCh. 1 - Prob. 2CTCh. 1 - Prob. 3CTCh. 1 - Prob. 4CTCh. 1 - Prob. 5CTCh. 1 - Prob. 6CTCh. 1 - Prob. 7CTCh. 1 - Prob. 8CTCh. 1 - Prob. 9CTCh. 1 - Prob. 10CTCh. 1 - Prob. 11CTCh. 1 - Prob. 12CTCh. 1 - Prob. 1CPCh. 1 - Prob. 2CPCh. 1 - Prob. 1CS1Ch. 1 - Prob. 2CS1Ch. 1 - Prob. 3CS1Ch. 1 - Prob. 1CS2Ch. 1 - Prob. 2CS2Ch. 1 - Prob. 3CS2Ch. 1 - Prob. 1CS3Ch. 1 - Prob. 2CS3Ch. 1 - Prob. 3CS3Ch. 1 - Prob. 4CS3Ch. 1 - Prob. 5CS3
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 10 15 Answer the following, using the figures and tables from the temperature versus coffee sales data from Questions 1 and 11: a. How many coffees should the manager prepare to make if the temperature is 32°F? b. As the temperature drops, how much more coffee will consumers purchase?ov (Hint: Use the slope.) 21 bru sug c. For what temperature values does the voy marw regression line make the best predictions? al X al 1090391-Yrit,vewolf 30-X Inlog arts bauoxs 268 PART 4 Statistical Studies and the Hunt forarrow_forward18 Using the results from the rainfall versus corn production data in Question 14, answer DOV 15 the following: a. Find and interpret the slope in the con- text of this problem. 79 b. Find the Y-intercept in the context of this problem. alb to sig c. Can the Y-intercept be interpreted here? (.ob or grinisiques xs as 101 gniwollol edt 958 orb sz) asiques sich ed: flow wo PEMAIarrow_forwardLet U = = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} be the universal set. Use the following subsets of U to determine if each statement is true or false. A = {0, 1, 3, 5} and B = {2, 3, 4, 5,9} • true AUB = {3,5} • true A - B = {0, 1} ⚫ true B = {0, 1, 6, 7, 8, 10} ⚫ true An Bc • true (AUB) = {0,1} = {0, 1, 2, 4, 6, 7, 8, 9, 10} ⚫ true A x B = {(0,2), (1, 3), (3, 4), (5,5)}arrow_forward
- Let A = {x Z | x=0 (mod 6)} and B = {x = Z | x = 0 (mod 9)}. Which of the following sentences describes the set relationship between A and B ? *Keep in mind that Ç means proper subset. AÇ B BÇA A = B AnB = 0 none of thesearrow_forwardLet U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} be the universal set. Let A = {0, 1, 2, 3, 9} and B = {2, 3, 4, 5, 6}. Select all elements in An B. 2 3 4 5 18 7 8 9 ☐ 10arrow_forwardLet U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} be the universal set. Let A = {0, 1, 2, 3, 9} and B = {2, 3, 4, 5, 6}. Select all elements in An B. 1 2 ✓ 3 + 5 10 7 > 00 ☐ 10arrow_forward
- Variable Total score (Y) Putts hit (X) Mean. 93.900 35.780 Standard Deviation 7.717 4.554 Correlation 0.896arrow_forward17 Referring to the figures and tables from the golf data in Questions 3 and 13, what hap- pens as you keep increasing X? Does Y increase forever? Explain. comis word ே om zol 6 svari woy wol visy alto su and vibed si s'ablow it bas akiog vino b tad) beil Bopara Aon csu How wod griz -do 30 義arrow_forwardVariable Temperature (X) Coffees sold (Y) Mean 35.08 29,913 Standard Deviation 16.29 12,174 Correlation -0.741arrow_forward
- 13 A golf analyst measures the total score and number of putts hit for 100 rounds of golf an amateur plays; you can see the summary of statistics in the following table. (See the figure in Question 3 for a scatterplot of this data.)noitoloqpics bella a. Is it reasonable to use a line to fit this data? Explain. 101 250 b. Find the equation of the best fitting 15er regression line. ad aufstuess som 'moob Y lo esulav in X ni ognado a tad Variable on Mean Standard Correlation 92 Deviation Total score (Y) 93.900 7.717 0.896 Putts hit (X) 35.780 4.554 totenololbenq axlam riso voy X to asulisy datdw gribol anil er 08,080.0 zl noitsism.A How atharrow_forwardVariable Bone loss (Y) Age (X) Mean 35.008. 67.992 Standard Deviation 7.684 10.673 Correlation 0.574arrow_forward50 Bone Loss 30 40 20 Scatterplot of Bone Loss vs. Age . [902) 10 50 60 70 80 90 Age a sub adi u xinq (20) E 4 adw I- nyd med ivia .0 What does a scatterplot that shows no linear relationship between X and Y look like?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellElementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice University
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning

Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL

Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell

Elementary Algebra
Algebra
ISBN:9780998625713
Author:Lynn Marecek, MaryAnne Anthony-Smith
Publisher:OpenStax - Rice University

Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,

Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Statistics 4.1 Introduction to Inferential Statistics; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=QLo4TEvBvK4;License: Standard YouTube License, CC-BY