(a)
Interpretation:
The shorthand valence shell electronic configuration of the given element, based on its location on the periodic table is to be stated.
Concept Introduction:
The distribution of the electrons that exists in the atomic orbital of an atom is collectively known as electronic configuration. The description of every electron in an orbital is given by the electronic configuration of that atom. The noble gas configuration is also known as shorthand electronic configuration.
The electrons that are present in the outermost shell of an atom are known as valence electrons. The outermost shell of an atom is known as valence shell. The valence electrons are more loosely held than the electrons which are closer to the nucleus.

Answer to Problem 115AP
The shorthand valence shell electronic configuration of the given element, nickel, is
Explanation of Solution
The valence shell electronic configuration of nickel is underlined in the actual shorthand configuration of nickel which is shown as,
The valence shell electronic configuration of nickel that has
(b)
Interpretation:
The shorthand valence shell electronic configuration of the given element, based on its location on the periodic table is to be stated.
Concept Introduction:
The distribution of the electrons that exists in the atomic orbital of an atom is collectively known as electronic configuration. The description of every electron in an orbital is given by the electronic configuration of that atom. The noble gas configuration is also known as shorthand electronic configuration.
The electrons that are present in the outermost shell of an atom are known as valence electrons. The outermost shell of an atom is known as valence shell. The valence electrons are more loosely held than the electrons which are closer to the nucleus.

Answer to Problem 115AP
The shorthand valence shell electronic configuration of the given element, niobium, is
Explanation of Solution
The valence shell electronic configuration of niobium is underlined in the actual shorthand configuration of niobium which is shown as,
The valence shell electronic configuration of niobium that has atomic number equal to
(c)
Interpretation:
The shorthand valence shell electronic configuration of the given element, based on its location on the periodic table is to be stated.
Concept Introduction:
The distribution of the electrons that exists in the atomic orbital of an atom is collectively known as electronic configuration. The description of every electron in an orbital is given by the electronic configuration of that atom. The noble gas configuration is also known as shorthand electronic configuration.
The electrons that are present in the outermost shell of an atom are known as valence electrons. The outermost shell of an atom is known as valence shell. The valence electrons are more loosely held than the electrons which are closer to the nucleus.

Answer to Problem 115AP
The shorthand valence shell electronic configuration of the given element, hafnium, is
Explanation of Solution
The valence shell electronic configuration of hafnium is underlined in the actual shorthand configuration of hafnium which is shown as,
The valence shell electronic configuration of hafnium that has atomic number equal to
(d)
Interpretation:
The shorthand valence shell electronic configuration of the given element, based on its location on the periodic table is to be stated.
Concept Introduction:
The distribution of the electrons that exists in the atomic orbital of an atom is collectively known as electronic configuration. The description of every electron in an orbital is given by the electronic configuration of that atom. The noble gas configuration is also known as shorthand electronic configuration.
The electrons that are present in the outermost shell of an atom are known as valence electrons. The outermost shell of an atom is known as valence shell. The valence electrons are more loosely held than the electrons which are closer to the nucleus.

Answer to Problem 115AP
The shorthand valence shell electronic configuration of the given element, astatine, is
Explanation of Solution
The valence shell electronic configuration of astatine is underlined in the actual shorthand configuration of astatine which is shown as,
The valence shell electronic configuration of astatine that has atomic number equal to
Want to see more full solutions like this?
Chapter 11 Solutions
Introductory Chemistry: Foundation - Text (Looseleaf)
- 4. Read paragraph 4.15 from your textbook, use your calculated lattice energy values for CuO, CuCO3 and Cu(OH)2 an explain thermal decomposition reaction of malachite: Cu2CO3(OH)2 →2CuO + H2O + CO2 (3 points)arrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forwardIII O Organic Chemistry Using wedges and dashes in skeletal structures Draw a skeletal ("line") structure for each of the molecules below. Be sure your structures show the important difference between the molecules. key O O O O O CHON Cl jiii iiiiiiii You can drag the slider to rotate the molecules. Explanation Check Click and drag to start drawing a structure. Q Search X G ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use F 3 W C 3/5arrow_forward
- 3. Use Kapustinskii's equation and data from Table 4.10 in your textbook to calculate lattice energies of Cu(OH)2 and CuCO3 (4 points)arrow_forward2. Copper (II) oxide crystalizes in monoclinic unit cell (included below; blue spheres 2+ represent Cu²+, red - O²-). Use Kapustinski's equation (4.5) to calculate lattice energy for CuO. You will need some data from Resource section of your textbook (p.901). (4 points) CuOarrow_forwardWhat is the IUPAC name of the following compound? OH (2S, 4R)-4-chloropentan-2-ol O (2R, 4R)-4-chloropentan-2-ol O (2R, 4S)-4-chloropentan-2-ol O(2S, 4S)-4-chloropentan-2-olarrow_forward
- Use the reaction coordinate diagram to answer the below questions. Type your answers into the answer box for each question. (Watch your spelling) Energy A B C D Reaction coordinate E A) Is the reaction step going from D to F endothermic or exothermic? A F G B) Does point D represent a reactant, product, intermediate or transition state? A/ C) Which step (step 1 or step 2) is the rate determining step? Aarrow_forward1. Using radii from Resource section 1 (p.901) and Born-Lande equation, calculate the lattice energy for PbS, which crystallizes in the NaCl structure. Then, use the Born-Haber cycle to obtain the value of lattice energy for PbS. You will need the following data following data: AH Pb(g) = 196 kJ/mol; AHƒ PbS = −98 kJ/mol; electron affinities for S(g)→S¯(g) is -201 kJ/mol; S¯(g) (g) is 640kJ/mol. Ionization energies for Pb are listed in Resource section 2, p.903. Remember that enthalpies of formation are calculated beginning with the elements in their standard states (S8 for sulfur). The formation of S2, AHF: S2 (g) = 535 kJ/mol. Compare the two values, and explain the difference. (8 points)arrow_forwardIn the answer box, type the number of maximum stereoisomers possible for the following compound. A H H COH OH = H C Br H.C OH CHarrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning




