Chemistry: Atoms First
2nd Edition
ISBN: 9780073511184
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 11.54QP
Interpretation Introduction
Interpretation: The numbers of ozone molecules are present in 1L of air under given conditions has to be determined.
Concept Introduction:
Ideal gas is the most usually used form of the ideal gas equation, which describes the relationship among the four variables
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Given that the concentration of CH4 in the atmosphere is 1.8 ppm, calculate the total
mass of this gas that is present in the atmosphere. Note that the total mass of the
atmosphere is 5.1 x 1018 kg and that its average molar mass is 29.0 g/mol.
Ozone molecules in the stratosphere absorb much of the harmful radiation from the sun. How many ozone molecules are present in 4.00 L of air under the stratospheric ozone conditions of 249 K temperature and 1.67 × 10−3 atm pressure?
Although ozone is an important component of the upper atmosphere, long-term exposure to ozone in the air we breathe can cause inflammation of the lung, impairment of lung defense mechanisms, and irreversible changes in lung structure. The EPA has set an 8 hour limit for ozone of 0.08 ppm as an air quality standard for cities. At the EPA limit, how many ozone molecules are present in 5.0 liters of air at 25 °C and 0.967 atm? (Hint: assume that air is an ideal gas and calculate the total number of molecules there are in 5.0 L. Then use the definition of ppm.)
Chapter 11 Solutions
Chemistry: Atoms First
Ch. 11.2 - Prob. 11.1WECh. 11.2 - Prob. 1PPACh. 11.2 - Prob. 1PPBCh. 11.2 - Prob. 1PPCCh. 11.2 - Prob. 11.2.1SRCh. 11.2 - Prob. 11.2.2SRCh. 11.3 - Prob. 11.2WECh. 11.3 - Prob. 2PPACh. 11.3 - Prob. 2PPBCh. 11.3 - Arrange the four columns of liquid [(i)(iv)] in...
Ch. 11.3 - Prob. 11.3.1SRCh. 11.3 - Prob. 11.3.2SRCh. 11.3 - Prob. 11.3.3SRCh. 11.3 - Prob. 11.3.4SRCh. 11.3 - Prob. 11.3.5SRCh. 11.4 - Prob. 11.3WECh. 11.4 - Prob. 3PPACh. 11.4 - Prob. 3PPBCh. 11.4 - Prob. 3PPCCh. 11.4 - Prob. 11.4WECh. 11.4 - Prob. 4PPACh. 11.4 - Prob. 4PPBCh. 11.4 - Prob. 4PPCCh. 11.4 - If we combine 3.0 L of NO and 1.5 L of O2, and...Ch. 11.4 - What volume (in liters) of water vapor will be...Ch. 11.4 - Prob. 5PPBCh. 11.4 - Prob. 5PPCCh. 11.4 - Prob. 11.6WECh. 11.4 - Prob. 6PPACh. 11.4 - Prob. 6PPBCh. 11.4 - Prob. 6PPCCh. 11.4 - Prob. 11.4.1SRCh. 11.4 - Prob. 11.4.2SRCh. 11.4 - Prob. 11.4.3SRCh. 11.4 - Prob. 11.4.4SRCh. 11.4 - Prob. 11.4.5SRCh. 11.4 - Prob. 11.4.6SRCh. 11.5 - Prob. 11.7WECh. 11.5 - Prob. 7PPACh. 11.5 - Prob. 7PPBCh. 11.5 - Prob. 7PPCCh. 11.5 - Prob. 11.8WECh. 11.5 - Prob. 8PPACh. 11.5 - Prob. 8PPBCh. 11.5 - Prob. 8PPCCh. 11.5 - Prob. 11.9WECh. 11.5 - Prob. 9PPACh. 11.5 - Prob. 9PPBCh. 11.5 - Prob. 9PPCCh. 11.5 - Prob. 11.5.1SRCh. 11.5 - Prob. 11.5.2SRCh. 11.5 - Prob. 11.5.3SRCh. 11.5 - Prob. 11.5.4SRCh. 11.6 - Prob. 11.10WECh. 11.6 - Prob. 10PPACh. 11.6 - Prob. 10PPBCh. 11.6 - Prob. 10PPCCh. 11.6 - Prob. 11.11WECh. 11.6 - Determine the excluded volume per mole and the...Ch. 11.6 - Prob. 11PPBCh. 11.6 - Prob. 11PPCCh. 11.6 - Prob. 11.6.1SRCh. 11.6 - Prob. 11.6.2SRCh. 11.7 - Prob. 11.12WECh. 11.7 - Prob. 12PPACh. 11.7 - Prob. 12PPBCh. 11.7 - Prob. 12PPCCh. 11.7 - Prob. 11.13WECh. 11.7 - Prob. 13PPACh. 11.7 - Prob. 13PPBCh. 11.7 - Prob. 13PPCCh. 11.7 - Prob. 11.7.1SRCh. 11.7 - Prob. 11.7.2SRCh. 11.7 - Prob. 11.7.3SRCh. 11.7 - Prob. 11.7.4SRCh. 11.7 - Prob. 11.7.5SRCh. 11.8 - Prob. 11.14WECh. 11.8 - Prob. 14PPACh. 11.8 - Prob. 14PPBCh. 11.8 - Prob. 14PPCCh. 11.8 - Prob. 11.15WECh. 11.8 - Prob. 15PPACh. 11.8 - Prob. 15PPBCh. 11.8 - Prob. 15PPCCh. 11.8 - Calcium metal reacts with water to produce...Ch. 11.8 - Prob. 16PPACh. 11.8 - Determine the volume of gas collected over water...Ch. 11.8 - Prob. 16PPCCh. 11.8 - Prob. 11.8.1SRCh. 11.8 - Prob. 11.8.2SRCh. 11.8 - Prob. 11.8.3SRCh. 11 - Prob. 11.1QPCh. 11 - Prob. 11.2QPCh. 11 - Prob. 11.3QPCh. 11 - Prob. 11.4QPCh. 11 - Prob. 11.5QPCh. 11 - Prob. 11.6QPCh. 11 - Prob. 11.7QPCh. 11 - Prob. 11.8QPCh. 11 - Prob. 11.9QPCh. 11 - Prob. 11.10QPCh. 11 - Prob. 11.11QPCh. 11 - The 235U isotope undergoes fission when bombarded...Ch. 11 - Prob. 11.13QPCh. 11 - Prob. 11.14QPCh. 11 - Prob. 11.15QPCh. 11 - Prob. 11.16QPCh. 11 - Prob. 11.17QPCh. 11 - Prob. 11.18QPCh. 11 - Prob. 11.19QPCh. 11 - Prob. 11.20QPCh. 11 - Prob. 11.21QPCh. 11 - Prob. 11.22QPCh. 11 - Prob. 11.23QPCh. 11 - Prob. 11.24QPCh. 11 - Prob. 11.25QPCh. 11 - Prob. 11.26QPCh. 11 - Prob. 11.27QPCh. 11 - Prob. 11.28QPCh. 11 - Prob. 11.29QPCh. 11 - Prob. 11.30QPCh. 11 - Prob. 11.31QPCh. 11 - A sample of air occupies 3.8 L when the pressure...Ch. 11 - Prob. 11.33QPCh. 11 - Prob. 11.34QPCh. 11 - Prob. 11.35QPCh. 11 - Prob. 11.36QPCh. 11 - Prob. 11.37QPCh. 11 - Prob. 11.38QPCh. 11 - A gaseous sample of a substance is cooled at...Ch. 11 - Prob. 11.40QPCh. 11 - Prob. 11.41QPCh. 11 - Prob. 11.42QPCh. 11 - Prob. 11.43QPCh. 11 - Prob. 11.44QPCh. 11 - Prob. 11.45QPCh. 11 - Prob. 11.46QPCh. 11 - Prob. 11.47QPCh. 11 - Prob. 11.48QPCh. 11 - Prob. 11.49QPCh. 11 - Prob. 11.50QPCh. 11 - Prob. 11.51QPCh. 11 - Prob. 11.52QPCh. 11 - Prob. 11.53QPCh. 11 - Prob. 11.54QPCh. 11 - Prob. 11.55QPCh. 11 - Prob. 11.56QPCh. 11 - Prob. 11.57QPCh. 11 - A certain anesthetic contains 64.9 percent C, 13.5...Ch. 11 - A compound has the empirical formula SF4. At 20C,...Ch. 11 - Prob. 11.60QPCh. 11 - Prob. 11.61QPCh. 11 - Prob. 11.62QPCh. 11 - Prob. 11.63QPCh. 11 - Write the van der Waals equation for a real gas....Ch. 11 - Prob. 11.65QPCh. 11 - Prob. 11.66QPCh. 11 - Prob. 11.67QPCh. 11 - Prob. 11.68QPCh. 11 - Prob. 11.69QPCh. 11 - Prob. 11.70QPCh. 11 - Prob. 11.71QPCh. 11 - Prob. 11.72QPCh. 11 - Prob. 11.73QPCh. 11 - Prob. 11.74QPCh. 11 - Prob. 11.75QPCh. 11 - Prob. 11.76QPCh. 11 - Prob. 11.77QPCh. 11 - Prob. 11.78QPCh. 11 - Prob. 11.79QPCh. 11 - Prob. 11.1VCCh. 11 - Prob. 11.2VCCh. 11 - Prob. 11.3VCCh. 11 - Prob. 11.4VCCh. 11 - Prob. 11.80QPCh. 11 - Prob. 11.81QPCh. 11 - Prob. 11.82QPCh. 11 - Prob. 11.83QPCh. 11 - Prob. 11.84QPCh. 11 - Prob. 11.85QPCh. 11 - Prob. 11.86QPCh. 11 - Prob. 11.87QPCh. 11 - Prob. 11.88QPCh. 11 - Ethanol (C2H5OH) bums in air: C2H5OH(l) + O2(g) ...Ch. 11 - Prob. 11.90QPCh. 11 - Prob. 11.91QPCh. 11 - Prob. 11.92QPCh. 11 - Prob. 11.93QPCh. 11 - Prob. 11.94QPCh. 11 - Prob. 11.95QPCh. 11 - Prob. 11.96QPCh. 11 - Prob. 11.97QPCh. 11 - Prob. 11.98QPCh. 11 - Prob. 11.99QPCh. 11 - Prob. 11.100QPCh. 11 - Prob. 11.101QPCh. 11 - Prob. 11.102QPCh. 11 - Prob. 11.103QPCh. 11 - Prob. 11.104QPCh. 11 - Prob. 11.105QPCh. 11 - Prob. 11.106QPCh. 11 - Prob. 11.107QPCh. 11 - Prob. 11.108QPCh. 11 - Prob. 11.109QPCh. 11 - A 180.0-mg sample of an alloy of iron and metal X...Ch. 11 - Prob. 11.111QPCh. 11 - Prob. 11.112QPCh. 11 - Prob. 11.113QPCh. 11 - Prob. 11.114QPCh. 11 - Prob. 11.115QPCh. 11 - Prob. 11.116QPCh. 11 - Prob. 11.117QPCh. 11 - Prob. 11.118QPCh. 11 - Prob. 11.119QPCh. 11 - Prob. 11.120QPCh. 11 - Prob. 11.121QPCh. 11 - Prob. 11.122QPCh. 11 - Prob. 11.123QPCh. 11 - Prob. 11.124QPCh. 11 - Prob. 11.125QPCh. 11 - Acidic oxides such as carbon dioxide react with...Ch. 11 - Prob. 11.127QPCh. 11 - Prob. 11.128QPCh. 11 - Prob. 11.129QPCh. 11 - Prob. 11.130QPCh. 11 - Prob. 11.131QPCh. 11 - Prob. 11.132QPCh. 11 - Prob. 11.133QPCh. 11 - Prob. 11.134QPCh. 11 - Prob. 11.135QPCh. 11 - Prob. 11.136QPCh. 11 - Prob. 11.137QPCh. 11 - Prob. 11.138QPCh. 11 - Prob. 11.139QPCh. 11 - Prob. 11.140QPCh. 11 - Prob. 11.141QPCh. 11 - At what temperature will He atoms have the same...Ch. 11 - Prob. 11.143QPCh. 11 - Prob. 11.144QPCh. 11 - Prob. 11.145QPCh. 11 - Prob. 11.146QPCh. 11 - Prob. 11.147QPCh. 11 - Prob. 11.148QPCh. 11 - Prob. 11.149QPCh. 11 - Prob. 11.150QPCh. 11 - Prob. 11.151QPCh. 11 - A 5.00-mole sample of NH3 gas is kept in a 1.92-L...Ch. 11 - Prob. 11.153QPCh. 11 - Prob. 11.154QPCh. 11 - Prob. 11.155QPCh. 11 - Prob. 11.156QPCh. 11 - Prob. 11.157QPCh. 11 - Prob. 11.158QPCh. 11 - Prob. 11.159QPCh. 11 - Prob. 11.160QPCh. 11 - Prob. 11.161QPCh. 11 - Determine the mole fraction of helium in a gaseous...Ch. 11 - Prob. 11.2KSPCh. 11 - Prob. 11.3KSPCh. 11 - Prob. 11.4KSP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- How does hydraulic fracturing differ from previously used techniques for the recovery of natural gas from the earth?arrow_forwardWhat is the biological importance of stratospheric ozone? Explain.arrow_forwardGiven that a sample of air is made up of nitrogen, oxygen, and argon in the mole fractions 0.78 N2, 0.21 O2, and 0.010 Ar, what is the density of air at standard temperature and pressure?arrow_forward
- Given that a sample of air is made up of nitrogen, oxygen, and argon in the mole fractions 0.78 N2, 0.21 O2, and 0.010 Ar, what is the density of air at standard temperature and pressure?arrow_forwardName a favorable effect of the global increase of CO2 in the atmosphere.arrow_forwardAs weather balloons rise from the earths surface, the pressure of the atmosphere becomes less, tending to cause the volume of the balloons to expand. However, the temperatura is much lower in the upper atmosphere than at sea level. Would this temperatura effect tend to make such a balloon expand or contract? Weather balloons do, in fact, expand as they rise. What does this tell you?arrow_forward
- The atmosphere is a highly complex gaseous mixture that sustains life on Earth. Approximately 99% of the air is composed of nitrogen (N2) and oxygen (O2). The remaining 1% is made up of a variety of other gases, including carbon monoxide (CO), hydrogen (H2), and ammonia (NH3), among many others. Because most of the gases that comprise the atmosphere are present at very low levels (<0.002%), their quantities are often expressed in parts per million (ppm) or parts per billion (ppb) rather than as a percent. Ozone (O3) is found in the troposphere at 2.5×10−6%. Convert this value to parts per million. [O3]= _______ ppm The atmosphere contains 2.9×10−7%2.9×10−7% nitrogen dioxide (NO2). Convert this value to parts per billion. [NO2]= _______ ppb Atmospheric methane (CH4) is present at 1983 ppb. Convert this value to a percentage. [CH4]= _______ %arrow_forwardA 0.477 mol sample of O gas has a volume of 12.8 L at a certain temperature and pressure. If all this O were converted to ozone (O) at the same temperature and pressure, what is the ozone volume (in liters)?3 O(g) → 2 O(g)arrow_forwardAs of the writing of this text, EPA standards limit atmospheric ozone levels in urban environments to 84 ppb. How many moles of ozone would there be in the air above Los Angeles County (an area about 4000 square miles; consider a height of 100 m above the ground) if ozone was at this concentration?arrow_forward
- Calculate the total mass (in kg) of nitrogen, oxygen, and carbon dioxide gases in the atmosphere. Assume that the total mass of air in the atmosphere is 5.25 x 1021 g. Mass of N2 x 10 kg Mass of O2 x 10 |kg Mass of CO2 x 10 kg (Enter your answers in scientific notation.) Composition of dry air at sea level Composition (% by Volume) Gas N2 78.03 O2 20.99 Ar 0.94 CO2 0.033 Ne 0.0015 Не 0.000524 Kr 0.00014 Хе 0.000006arrow_forwardThe world burns approximately 3.7 * 1012 kg of fossil fuel per year. Use the combustion of octane as the representative reaction and determine the mass of carbon dioxide (the most significant greenhouse gas) formed per year. The current concentration of carbon dioxide in the atmosphere is approximately 399 ppm (by volume). By what percentage does the concentration increase each year due to fossil fuel combustion? Approximate the average properties of the entire atmosphere by assuming that the atmosphere extends from sea level to 15 km and that it has an average pressure of 381 torr and average temperature of 275 K. Assume Earth is a perfect sphere with a radius of 6371 km.arrow_forward24.00 g of solid calcium carbonate completely decomposes at 579 °C in a 12.000 L sealed vessel. The products of this decomposition are solid calcium oxide and carbon dioxide gas. Note: R = 0.08206 Latm/molK Determine the stoichiometric coefficient of carbon dioxide in the balanced chemical equation. Determine the theoretical yield of carbon dioxide in moles Determine the pressure of carbon dioxide gas produced in this reactionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781285199023
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning