Chemistry: Atoms First
2nd Edition
ISBN: 9780073511184
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 11.20QP
Interpretation Introduction
Interpretation:
How can get water and oil from hundreds of feet below the earth has to be discussed.
Concept Introduction:
The key to understanding this is realizing that suction is not a force, but simply removing an opposing force to the force of air pressure which is already there. When you push a pipe down a deep hole into a pool of water at the bottom of a well, air inside the pipe is pushing down on the water in the pipe, and air outside the pipe is pushing down on the water outside the pipe, which in turn pushes up on water inside the pipe all is in balance.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The vapor pressure of mercury at 20 oC is 1.7 x 10-6 atm. Your lab partner breaks a mercury thermometer and spills most of the mercury onto the floor. The dimensions of the laboratory are 16.0 m x 8.0 m x 3.0 m (l x w x h). At 20 oC, calculate the mass (in grams) of the mercury vapor in the room. Determine if the concentration of mercury vapor exceeds air quality regulations of 5.0 x 10-2 mg/m3. How would you clean up this spell?
Chemistry
An empty flask weighs 129.361 g. After vaporization of a sample of volatile liquid at a temperature of 99.7 °C, the flask was sealed, cooled
to room temperature, and found to have a mass of 129.657 g. The atmospheric pressure was 759.1 mm Hg. The flask was rinsed and
completely filled with water at 23.4 °C. The mass of the water-filled flask was determined to be 377.398 g. What is the temperature of
the gas that fills the flask in Kelvin? (Enter your answer as a number without units.)
An empty flask weighs 128.950 g. After vaporization of a sample of volatile liquid at a temperature of 99.4 °C. the flask was sealed, cooled
to room temperature, and found to have a mass of 129.368 g. The atmospheric pressure was 759.5 mm Hg. The flask was rinsed and
cormpletely filled with water at 21.3 °C. The mass of the water-filled flask was determined to be 377.557 g. What is the molar mass (in
g/mol) of the volatile liquid? (Enter your answer as a number without units.)
The volume of a sample of pure HCl gas was 289 mL at 24
°
C and 137 mmHg. It was completely dissolved in about 50 mL of water and titrated with an NaOH solution;
11.7 mL
of the NaOH solution was required to neutralize the HCl. Calculate the molarity of the NaOH solution.
Chapter 11 Solutions
Chemistry: Atoms First
Ch. 11.2 - Prob. 11.1WECh. 11.2 - Prob. 1PPACh. 11.2 - Prob. 1PPBCh. 11.2 - Prob. 1PPCCh. 11.2 - Prob. 11.2.1SRCh. 11.2 - Prob. 11.2.2SRCh. 11.3 - Prob. 11.2WECh. 11.3 - Prob. 2PPACh. 11.3 - Prob. 2PPBCh. 11.3 - Arrange the four columns of liquid [(i)(iv)] in...
Ch. 11.3 - Prob. 11.3.1SRCh. 11.3 - Prob. 11.3.2SRCh. 11.3 - Prob. 11.3.3SRCh. 11.3 - Prob. 11.3.4SRCh. 11.3 - Prob. 11.3.5SRCh. 11.4 - Prob. 11.3WECh. 11.4 - Prob. 3PPACh. 11.4 - Prob. 3PPBCh. 11.4 - Prob. 3PPCCh. 11.4 - Prob. 11.4WECh. 11.4 - Prob. 4PPACh. 11.4 - Prob. 4PPBCh. 11.4 - Prob. 4PPCCh. 11.4 - If we combine 3.0 L of NO and 1.5 L of O2, and...Ch. 11.4 - What volume (in liters) of water vapor will be...Ch. 11.4 - Prob. 5PPBCh. 11.4 - Prob. 5PPCCh. 11.4 - Prob. 11.6WECh. 11.4 - Prob. 6PPACh. 11.4 - Prob. 6PPBCh. 11.4 - Prob. 6PPCCh. 11.4 - Prob. 11.4.1SRCh. 11.4 - Prob. 11.4.2SRCh. 11.4 - Prob. 11.4.3SRCh. 11.4 - Prob. 11.4.4SRCh. 11.4 - Prob. 11.4.5SRCh. 11.4 - Prob. 11.4.6SRCh. 11.5 - Prob. 11.7WECh. 11.5 - Prob. 7PPACh. 11.5 - Prob. 7PPBCh. 11.5 - Prob. 7PPCCh. 11.5 - Prob. 11.8WECh. 11.5 - Prob. 8PPACh. 11.5 - Prob. 8PPBCh. 11.5 - Prob. 8PPCCh. 11.5 - Prob. 11.9WECh. 11.5 - Prob. 9PPACh. 11.5 - Prob. 9PPBCh. 11.5 - Prob. 9PPCCh. 11.5 - Prob. 11.5.1SRCh. 11.5 - Prob. 11.5.2SRCh. 11.5 - Prob. 11.5.3SRCh. 11.5 - Prob. 11.5.4SRCh. 11.6 - Prob. 11.10WECh. 11.6 - Prob. 10PPACh. 11.6 - Prob. 10PPBCh. 11.6 - Prob. 10PPCCh. 11.6 - Prob. 11.11WECh. 11.6 - Determine the excluded volume per mole and the...Ch. 11.6 - Prob. 11PPBCh. 11.6 - Prob. 11PPCCh. 11.6 - Prob. 11.6.1SRCh. 11.6 - Prob. 11.6.2SRCh. 11.7 - Prob. 11.12WECh. 11.7 - Prob. 12PPACh. 11.7 - Prob. 12PPBCh. 11.7 - Prob. 12PPCCh. 11.7 - Prob. 11.13WECh. 11.7 - Prob. 13PPACh. 11.7 - Prob. 13PPBCh. 11.7 - Prob. 13PPCCh. 11.7 - Prob. 11.7.1SRCh. 11.7 - Prob. 11.7.2SRCh. 11.7 - Prob. 11.7.3SRCh. 11.7 - Prob. 11.7.4SRCh. 11.7 - Prob. 11.7.5SRCh. 11.8 - Prob. 11.14WECh. 11.8 - Prob. 14PPACh. 11.8 - Prob. 14PPBCh. 11.8 - Prob. 14PPCCh. 11.8 - Prob. 11.15WECh. 11.8 - Prob. 15PPACh. 11.8 - Prob. 15PPBCh. 11.8 - Prob. 15PPCCh. 11.8 - Calcium metal reacts with water to produce...Ch. 11.8 - Prob. 16PPACh. 11.8 - Determine the volume of gas collected over water...Ch. 11.8 - Prob. 16PPCCh. 11.8 - Prob. 11.8.1SRCh. 11.8 - Prob. 11.8.2SRCh. 11.8 - Prob. 11.8.3SRCh. 11 - Prob. 11.1QPCh. 11 - Prob. 11.2QPCh. 11 - Prob. 11.3QPCh. 11 - Prob. 11.4QPCh. 11 - Prob. 11.5QPCh. 11 - Prob. 11.6QPCh. 11 - Prob. 11.7QPCh. 11 - Prob. 11.8QPCh. 11 - Prob. 11.9QPCh. 11 - Prob. 11.10QPCh. 11 - Prob. 11.11QPCh. 11 - The 235U isotope undergoes fission when bombarded...Ch. 11 - Prob. 11.13QPCh. 11 - Prob. 11.14QPCh. 11 - Prob. 11.15QPCh. 11 - Prob. 11.16QPCh. 11 - Prob. 11.17QPCh. 11 - Prob. 11.18QPCh. 11 - Prob. 11.19QPCh. 11 - Prob. 11.20QPCh. 11 - Prob. 11.21QPCh. 11 - Prob. 11.22QPCh. 11 - Prob. 11.23QPCh. 11 - Prob. 11.24QPCh. 11 - Prob. 11.25QPCh. 11 - Prob. 11.26QPCh. 11 - Prob. 11.27QPCh. 11 - Prob. 11.28QPCh. 11 - Prob. 11.29QPCh. 11 - Prob. 11.30QPCh. 11 - Prob. 11.31QPCh. 11 - A sample of air occupies 3.8 L when the pressure...Ch. 11 - Prob. 11.33QPCh. 11 - Prob. 11.34QPCh. 11 - Prob. 11.35QPCh. 11 - Prob. 11.36QPCh. 11 - Prob. 11.37QPCh. 11 - Prob. 11.38QPCh. 11 - A gaseous sample of a substance is cooled at...Ch. 11 - Prob. 11.40QPCh. 11 - Prob. 11.41QPCh. 11 - Prob. 11.42QPCh. 11 - Prob. 11.43QPCh. 11 - Prob. 11.44QPCh. 11 - Prob. 11.45QPCh. 11 - Prob. 11.46QPCh. 11 - Prob. 11.47QPCh. 11 - Prob. 11.48QPCh. 11 - Prob. 11.49QPCh. 11 - Prob. 11.50QPCh. 11 - Prob. 11.51QPCh. 11 - Prob. 11.52QPCh. 11 - Prob. 11.53QPCh. 11 - Prob. 11.54QPCh. 11 - Prob. 11.55QPCh. 11 - Prob. 11.56QPCh. 11 - Prob. 11.57QPCh. 11 - A certain anesthetic contains 64.9 percent C, 13.5...Ch. 11 - A compound has the empirical formula SF4. At 20C,...Ch. 11 - Prob. 11.60QPCh. 11 - Prob. 11.61QPCh. 11 - Prob. 11.62QPCh. 11 - Prob. 11.63QPCh. 11 - Write the van der Waals equation for a real gas....Ch. 11 - Prob. 11.65QPCh. 11 - Prob. 11.66QPCh. 11 - Prob. 11.67QPCh. 11 - Prob. 11.68QPCh. 11 - Prob. 11.69QPCh. 11 - Prob. 11.70QPCh. 11 - Prob. 11.71QPCh. 11 - Prob. 11.72QPCh. 11 - Prob. 11.73QPCh. 11 - Prob. 11.74QPCh. 11 - Prob. 11.75QPCh. 11 - Prob. 11.76QPCh. 11 - Prob. 11.77QPCh. 11 - Prob. 11.78QPCh. 11 - Prob. 11.79QPCh. 11 - Prob. 11.1VCCh. 11 - Prob. 11.2VCCh. 11 - Prob. 11.3VCCh. 11 - Prob. 11.4VCCh. 11 - Prob. 11.80QPCh. 11 - Prob. 11.81QPCh. 11 - Prob. 11.82QPCh. 11 - Prob. 11.83QPCh. 11 - Prob. 11.84QPCh. 11 - Prob. 11.85QPCh. 11 - Prob. 11.86QPCh. 11 - Prob. 11.87QPCh. 11 - Prob. 11.88QPCh. 11 - Ethanol (C2H5OH) bums in air: C2H5OH(l) + O2(g) ...Ch. 11 - Prob. 11.90QPCh. 11 - Prob. 11.91QPCh. 11 - Prob. 11.92QPCh. 11 - Prob. 11.93QPCh. 11 - Prob. 11.94QPCh. 11 - Prob. 11.95QPCh. 11 - Prob. 11.96QPCh. 11 - Prob. 11.97QPCh. 11 - Prob. 11.98QPCh. 11 - Prob. 11.99QPCh. 11 - Prob. 11.100QPCh. 11 - Prob. 11.101QPCh. 11 - Prob. 11.102QPCh. 11 - Prob. 11.103QPCh. 11 - Prob. 11.104QPCh. 11 - Prob. 11.105QPCh. 11 - Prob. 11.106QPCh. 11 - Prob. 11.107QPCh. 11 - Prob. 11.108QPCh. 11 - Prob. 11.109QPCh. 11 - A 180.0-mg sample of an alloy of iron and metal X...Ch. 11 - Prob. 11.111QPCh. 11 - Prob. 11.112QPCh. 11 - Prob. 11.113QPCh. 11 - Prob. 11.114QPCh. 11 - Prob. 11.115QPCh. 11 - Prob. 11.116QPCh. 11 - Prob. 11.117QPCh. 11 - Prob. 11.118QPCh. 11 - Prob. 11.119QPCh. 11 - Prob. 11.120QPCh. 11 - Prob. 11.121QPCh. 11 - Prob. 11.122QPCh. 11 - Prob. 11.123QPCh. 11 - Prob. 11.124QPCh. 11 - Prob. 11.125QPCh. 11 - Acidic oxides such as carbon dioxide react with...Ch. 11 - Prob. 11.127QPCh. 11 - Prob. 11.128QPCh. 11 - Prob. 11.129QPCh. 11 - Prob. 11.130QPCh. 11 - Prob. 11.131QPCh. 11 - Prob. 11.132QPCh. 11 - Prob. 11.133QPCh. 11 - Prob. 11.134QPCh. 11 - Prob. 11.135QPCh. 11 - Prob. 11.136QPCh. 11 - Prob. 11.137QPCh. 11 - Prob. 11.138QPCh. 11 - Prob. 11.139QPCh. 11 - Prob. 11.140QPCh. 11 - Prob. 11.141QPCh. 11 - At what temperature will He atoms have the same...Ch. 11 - Prob. 11.143QPCh. 11 - Prob. 11.144QPCh. 11 - Prob. 11.145QPCh. 11 - Prob. 11.146QPCh. 11 - Prob. 11.147QPCh. 11 - Prob. 11.148QPCh. 11 - Prob. 11.149QPCh. 11 - Prob. 11.150QPCh. 11 - Prob. 11.151QPCh. 11 - A 5.00-mole sample of NH3 gas is kept in a 1.92-L...Ch. 11 - Prob. 11.153QPCh. 11 - Prob. 11.154QPCh. 11 - Prob. 11.155QPCh. 11 - Prob. 11.156QPCh. 11 - Prob. 11.157QPCh. 11 - Prob. 11.158QPCh. 11 - Prob. 11.159QPCh. 11 - Prob. 11.160QPCh. 11 - Prob. 11.161QPCh. 11 - Determine the mole fraction of helium in a gaseous...Ch. 11 - Prob. 11.2KSPCh. 11 - Prob. 11.3KSPCh. 11 - Prob. 11.4KSP
Knowledge Booster
Similar questions
- Given that a sample of air is made up of nitrogen, oxygen, and argon in the mole fractions 0.78 N2, 0.21 O2, and 0.010 Ar, what is the density of air at standard temperature and pressure?arrow_forwardEach sketch below shows a flask with some gas and a pool of mercury in it. The gas is at a pressure of 1 atm. A J-shaped tube is connected to the bottom of the flask, and the mercury can freely flow in or out of this tube. (You can assume that there is so much more mercury in the pool than can fit into the tube that even if the J-tube is completely filled, the level of mercury in the pool won't change.) Notice also that in the left sketch the J-tube is open at its other end, so that air from the atmosphere can freely flow. On the other hand, in the right sketch the J-tube is closed at its other end, and you should assume there is no gas between the mercury and the closed end of the tube. To answer this question, you must decide what the mercury level will be when the mercury finally stops flowing in or out of the tube. By moving the sliders back and forth, you'll see different levels of mercury in the J-tube. Select the final correct level for each sketch. 1 1 2 I Don't Know open tube…arrow_forward73. A 500.-mL sample of O2 gas at 24 °C was prepared by decomposing a 3% aqueous solution of hydrogen peroxide, H2 O2, in the presence of a small amount of manganese catalyst by the reaction 2H2 O2 (aq) → 2H2O (g) + The oxygen thus prepared was collected by displacement of water. The total pressure of gas collected was 755 mm Hg. What is the partial pressure of O2 in the mixture? How many moles of O2 are in the mixture? (The vapor pressure of water at 24 °C is 23 mm Hg.)arrow_forward
- Each sketch below shows a flask with some gas and a pool of mercury in it. The gas is at a pressure of 0.5 atm. A J-shaped tube is connected to the bottom of the flask, and the mercury can freely flow in or out of this tube. (You can assume that there is so much more mercury in the pool than can fit into the tube that even if the J-tube is completely filled, the level of mercury in the pool won't change.) Notice also that in the left sketch the J-tube is open at its other end, so that air from the atmosphere can freely flow. On the other hand, in the right sketch the J-tube is closed at its other end, and you should assume there is no gas between the mercury and the closed end of the tube. To answer this question, you must decide what the mercury level will be when the mercury finally stops flowing in or out of the tube. By moving the sliders back and forth, you'll see different levels of mercury in the J-tube. Select the final correct level for each sketch. A open tube closed tube -…arrow_forwardCalculate the height of a column of water at 25 °C that corresponds to normal atmospheric pressure. The density of water at this temperature is 1.0 g/cm3.arrow_forwardc) This relationship is known as Graham's Law of Effusion. Since both gases are at te same temperature, they must have the same average kinetic energy (½ mv²), where m is mass and v is velocity (like speed). Since both gases have the same average kinetic energy, you can state that ½ muvL2 = v ². Multiplying both sides by 2 gives you m v 2 y ². Rearranging the equation to get H H LL H H 2 m = m both masses on the same side of the equation will give you mu/mH = V 2/VL2. In 3a and 3b, you probably noticed that the heavy gas particles took twice as long to diffuse as the light gas particles. This means that the light gas particles are moving twice as fast, VH/VL = ½. Therefore, V 2/VL2 = ¼. How many times heavier is the heavy gas compared to the light gas? d) If the light gas was Ne, what would be a reasonable identity for the heavy gas?arrow_forward
- A 5.50-mole sample of NH3 gas is kept in a 1.85-L container at 309 K. If the van der Waals equation is assumed to give the correct answer for the pressure of the gas, calculate the percent error made in using the ideal-gas equation to calculate the pressure. (Use a = 4.17 atm·L2·mol−2 and b = 0.0371 L·mol−1 for the van der Waals equation.)arrow_forwardA flask of ammonia is connected to a flask of an unknown acid HX by a 1.22 m glass tube (where "X" represents a halogen). As the two gases diffuse down the tube, a white ring of NH4X forms 83.6 cm from the ammonia flask. Identify element X (Name or symbol).arrow_forwardWhen collecting a gas over water it is necessary to correct for the vapor pressure of water in order to determine the pressure of the gas you are collecting. We will do this by using a graph of ln P in mmHg versus 1/T where T is the temperature in Kelvin. The equation is y = -5206.4 x + 20.621 (With an R^2 = 0.9999). If you collect a gas at 26.8 ℃, what is the value of “x” that you want to use in the equation. (Keep the answer for the next question). (Keep extra digits, you do not want to round in the middle of this calculation). Select one: a. 0.003660992 b. 0.037313433 c. 0.003378378 d. 299.95 e. 0.0273150 f. 273.15 g. None of these h. 0.003333889 i. 0.0027315arrow_forward
- The volume of a sample of pure HCl gas was 4.102 L at 25 oC and 102 torr. It was completely dissolved in an aqueous solution. Then this solution of HCl(aq) was titrated to the end point with 15 mL of NaOH(aq). What was the molar concentration of NaOH(aq)?arrow_forwardA 4.00 L flask contains 1.40 atm argon at 25°C. a) Calculate the moles of argon gas initially present in the flask. b) 20 mol Cl2 is added to the flask and the total pressure of gas changes. Explain the molecular-level reasons for this pressure change. c) Using your knowledge of gases and intermolecular forces, predict (and explain) whether the argon or the chlorine would behave more like an ideal gas.arrow_forwardJj.200.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning