Chemistry: Atoms First
Chemistry: Atoms First
2nd Edition
ISBN: 9780073511184
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 11, Problem 11.89QP

Ethanol (C2H5OH) bums in air:

C2H5OH(l) + O2(g) → CO2(g) +     H2O)(l)

Balance the equation and determine the volume of air in liters at 45.0°C and 793 mmHg required to burn 185 g of ethanol. Assume that air is 21.0 percent O2 by volume.

Expert Solution & Answer
Check Mark
Interpretation Introduction

Interpretation:

The given equation has to be balanced and the volume of air in liters has to be calculated.

Concept Introduction:

Ideal gas is the most usually used form of the ideal gas equation, which describes the relationship among the four variables P, V, n, and T. An ideal gas is a hypothetical sample of gas whose pressure-volume-temperature behavior is predicted accurately by the ideal gas equation.

PV = nRT

A balanced equation is an equation for a chemical reaction in which the number of atoms for each element in the reaction and the total charge are the similar for both the reactants and the products.

Answer to Problem 11.89QP

The balanced equation given by

C2H5OH(l) + 3O2(g)  2CO2(g) +3H2O(l)

The volume of air was found to be 1.44×103Lair

Explanation of Solution

Unbalance equation

C2H5OH(l) + O2(g)  CO2(g) +H2O(l)

Carbon is balanced by multiplying 2 in product side

C2H5OH(l) + O2(g)  2CO2(g) +H2O(l)

Next Oxygen is balance by multiplying 3 in reactant side

C2H5OH(l) + 3O2(g)  2CO2(g) +H2O(l)

Finally Oxygen and Hydrogen is balance

C2H5OH(l) + 3O2(g)  2CO2(g) +3H2O(l)

To determine the moles of each reactant by multiplying 3 in product side

Hence the balanced equation given by

C2H5OH(l) + 3O2(g)  2CO2(g) +3H2O(l)

To calculate the moles of O2

185gC2H5OH××1molC2H5OH46.07C2H5OH×3molO21molC2H5OH=12.05molO2

The moles of O2 is calculated by plugging in the values of the given molecular weight of C2H5OH and weight of C2H5OH.  The moles of O2 was found to be 12.05molO2

To determine the volume of O2using the ideal gas equation.

 VO2=nO2RTP  VO2=(12.05mol O2)(0.08206L.atmK.mol)(318)K(793mmHg×1atm760mmHg)=302LO2

The volume of O2 gas is calculated by plugging in the values of the given moles, temperature and pressure.  The volume of O2 gas was found to be 302LO2

To determine air is 21.0 percent O2by volume

 Vair=VO2=(100%air21%O2)=(302LO2)(100%air21%O2)=1.44×103Lair

The volume of air is calculated by plugging in the values of the given volume of O2 and percentage of air.  The volume of air was found to be 1.44×103Lair

Conclusion

The given equation was balanced and the volume of air in liters was calculated.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
the vibrational frequency of I2 is 214.5 cm-1.  (i) Using the harmonic oscillator model, evaluate the vibrational partition function and the mean vibrational energy of I2 at 1000K.  (ii) What is the characteristic vibrational temperature of I2? (iii) At 1000K, assuming high-temperature approximation, evaluate the vibrational partition function and the mean vibrational energy of I2.  (iv) Comparing (i) and (iii), is the high-temperature approximation good for I2 at 1000K?
Please correct answer and don't used hand raiting
consider a weak monoprotic acid that is 32 deprotonated at ph 4.00 what is the pka of the weak acid

Chapter 11 Solutions

Chemistry: Atoms First

Ch. 11.3 - Prob. 11.3.1SRCh. 11.3 - Prob. 11.3.2SRCh. 11.3 - Prob. 11.3.3SRCh. 11.3 - Prob. 11.3.4SRCh. 11.3 - Prob. 11.3.5SRCh. 11.4 - Prob. 11.3WECh. 11.4 - Prob. 3PPACh. 11.4 - Prob. 3PPBCh. 11.4 - Prob. 3PPCCh. 11.4 - Prob. 11.4WECh. 11.4 - Prob. 4PPACh. 11.4 - Prob. 4PPBCh. 11.4 - Prob. 4PPCCh. 11.4 - If we combine 3.0 L of NO and 1.5 L of O2, and...Ch. 11.4 - What volume (in liters) of water vapor will be...Ch. 11.4 - Prob. 5PPBCh. 11.4 - Prob. 5PPCCh. 11.4 - Prob. 11.6WECh. 11.4 - Prob. 6PPACh. 11.4 - Prob. 6PPBCh. 11.4 - Prob. 6PPCCh. 11.4 - Prob. 11.4.1SRCh. 11.4 - Prob. 11.4.2SRCh. 11.4 - Prob. 11.4.3SRCh. 11.4 - Prob. 11.4.4SRCh. 11.4 - Prob. 11.4.5SRCh. 11.4 - Prob. 11.4.6SRCh. 11.5 - Prob. 11.7WECh. 11.5 - Prob. 7PPACh. 11.5 - Prob. 7PPBCh. 11.5 - Prob. 7PPCCh. 11.5 - Prob. 11.8WECh. 11.5 - Prob. 8PPACh. 11.5 - Prob. 8PPBCh. 11.5 - Prob. 8PPCCh. 11.5 - Prob. 11.9WECh. 11.5 - Prob. 9PPACh. 11.5 - Prob. 9PPBCh. 11.5 - Prob. 9PPCCh. 11.5 - Prob. 11.5.1SRCh. 11.5 - Prob. 11.5.2SRCh. 11.5 - Prob. 11.5.3SRCh. 11.5 - Prob. 11.5.4SRCh. 11.6 - Prob. 11.10WECh. 11.6 - Prob. 10PPACh. 11.6 - Prob. 10PPBCh. 11.6 - Prob. 10PPCCh. 11.6 - Prob. 11.11WECh. 11.6 - Determine the excluded volume per mole and the...Ch. 11.6 - Prob. 11PPBCh. 11.6 - Prob. 11PPCCh. 11.6 - Prob. 11.6.1SRCh. 11.6 - Prob. 11.6.2SRCh. 11.7 - Prob. 11.12WECh. 11.7 - Prob. 12PPACh. 11.7 - Prob. 12PPBCh. 11.7 - Prob. 12PPCCh. 11.7 - Prob. 11.13WECh. 11.7 - Prob. 13PPACh. 11.7 - Prob. 13PPBCh. 11.7 - Prob. 13PPCCh. 11.7 - Prob. 11.7.1SRCh. 11.7 - Prob. 11.7.2SRCh. 11.7 - Prob. 11.7.3SRCh. 11.7 - Prob. 11.7.4SRCh. 11.7 - Prob. 11.7.5SRCh. 11.8 - Prob. 11.14WECh. 11.8 - Prob. 14PPACh. 11.8 - Prob. 14PPBCh. 11.8 - Prob. 14PPCCh. 11.8 - Prob. 11.15WECh. 11.8 - Prob. 15PPACh. 11.8 - Prob. 15PPBCh. 11.8 - Prob. 15PPCCh. 11.8 - Calcium metal reacts with water to produce...Ch. 11.8 - Prob. 16PPACh. 11.8 - Determine the volume of gas collected over water...Ch. 11.8 - Prob. 16PPCCh. 11.8 - Prob. 11.8.1SRCh. 11.8 - Prob. 11.8.2SRCh. 11.8 - Prob. 11.8.3SRCh. 11 - Prob. 11.1QPCh. 11 - Prob. 11.2QPCh. 11 - Prob. 11.3QPCh. 11 - Prob. 11.4QPCh. 11 - Prob. 11.5QPCh. 11 - Prob. 11.6QPCh. 11 - Prob. 11.7QPCh. 11 - Prob. 11.8QPCh. 11 - Prob. 11.9QPCh. 11 - Prob. 11.10QPCh. 11 - Prob. 11.11QPCh. 11 - The 235U isotope undergoes fission when bombarded...Ch. 11 - Prob. 11.13QPCh. 11 - Prob. 11.14QPCh. 11 - Prob. 11.15QPCh. 11 - Prob. 11.16QPCh. 11 - Prob. 11.17QPCh. 11 - Prob. 11.18QPCh. 11 - Prob. 11.19QPCh. 11 - Prob. 11.20QPCh. 11 - Prob. 11.21QPCh. 11 - Prob. 11.22QPCh. 11 - Prob. 11.23QPCh. 11 - Prob. 11.24QPCh. 11 - Prob. 11.25QPCh. 11 - Prob. 11.26QPCh. 11 - Prob. 11.27QPCh. 11 - Prob. 11.28QPCh. 11 - Prob. 11.29QPCh. 11 - Prob. 11.30QPCh. 11 - Prob. 11.31QPCh. 11 - A sample of air occupies 3.8 L when the pressure...Ch. 11 - Prob. 11.33QPCh. 11 - Prob. 11.34QPCh. 11 - Prob. 11.35QPCh. 11 - Prob. 11.36QPCh. 11 - Prob. 11.37QPCh. 11 - Prob. 11.38QPCh. 11 - A gaseous sample of a substance is cooled at...Ch. 11 - Prob. 11.40QPCh. 11 - Prob. 11.41QPCh. 11 - Prob. 11.42QPCh. 11 - Prob. 11.43QPCh. 11 - Prob. 11.44QPCh. 11 - Prob. 11.45QPCh. 11 - Prob. 11.46QPCh. 11 - Prob. 11.47QPCh. 11 - Prob. 11.48QPCh. 11 - Prob. 11.49QPCh. 11 - Prob. 11.50QPCh. 11 - Prob. 11.51QPCh. 11 - Prob. 11.52QPCh. 11 - Prob. 11.53QPCh. 11 - Prob. 11.54QPCh. 11 - Prob. 11.55QPCh. 11 - Prob. 11.56QPCh. 11 - Prob. 11.57QPCh. 11 - A certain anesthetic contains 64.9 percent C, 13.5...Ch. 11 - A compound has the empirical formula SF4. At 20C,...Ch. 11 - Prob. 11.60QPCh. 11 - Prob. 11.61QPCh. 11 - Prob. 11.62QPCh. 11 - Prob. 11.63QPCh. 11 - Write the van der Waals equation for a real gas....Ch. 11 - Prob. 11.65QPCh. 11 - Prob. 11.66QPCh. 11 - Prob. 11.67QPCh. 11 - Prob. 11.68QPCh. 11 - Prob. 11.69QPCh. 11 - Prob. 11.70QPCh. 11 - Prob. 11.71QPCh. 11 - Prob. 11.72QPCh. 11 - Prob. 11.73QPCh. 11 - Prob. 11.74QPCh. 11 - Prob. 11.75QPCh. 11 - Prob. 11.76QPCh. 11 - Prob. 11.77QPCh. 11 - Prob. 11.78QPCh. 11 - Prob. 11.79QPCh. 11 - Prob. 11.1VCCh. 11 - Prob. 11.2VCCh. 11 - Prob. 11.3VCCh. 11 - Prob. 11.4VCCh. 11 - Prob. 11.80QPCh. 11 - Prob. 11.81QPCh. 11 - Prob. 11.82QPCh. 11 - Prob. 11.83QPCh. 11 - Prob. 11.84QPCh. 11 - Prob. 11.85QPCh. 11 - Prob. 11.86QPCh. 11 - Prob. 11.87QPCh. 11 - Prob. 11.88QPCh. 11 - Ethanol (C2H5OH) bums in air: C2H5OH(l) + O2(g) ...Ch. 11 - Prob. 11.90QPCh. 11 - Prob. 11.91QPCh. 11 - Prob. 11.92QPCh. 11 - Prob. 11.93QPCh. 11 - Prob. 11.94QPCh. 11 - Prob. 11.95QPCh. 11 - Prob. 11.96QPCh. 11 - Prob. 11.97QPCh. 11 - Prob. 11.98QPCh. 11 - Prob. 11.99QPCh. 11 - Prob. 11.100QPCh. 11 - Prob. 11.101QPCh. 11 - Prob. 11.102QPCh. 11 - Prob. 11.103QPCh. 11 - Prob. 11.104QPCh. 11 - Prob. 11.105QPCh. 11 - Prob. 11.106QPCh. 11 - Prob. 11.107QPCh. 11 - Prob. 11.108QPCh. 11 - Prob. 11.109QPCh. 11 - A 180.0-mg sample of an alloy of iron and metal X...Ch. 11 - Prob. 11.111QPCh. 11 - Prob. 11.112QPCh. 11 - Prob. 11.113QPCh. 11 - Prob. 11.114QPCh. 11 - Prob. 11.115QPCh. 11 - Prob. 11.116QPCh. 11 - Prob. 11.117QPCh. 11 - Prob. 11.118QPCh. 11 - Prob. 11.119QPCh. 11 - Prob. 11.120QPCh. 11 - Prob. 11.121QPCh. 11 - Prob. 11.122QPCh. 11 - Prob. 11.123QPCh. 11 - Prob. 11.124QPCh. 11 - Prob. 11.125QPCh. 11 - Acidic oxides such as carbon dioxide react with...Ch. 11 - Prob. 11.127QPCh. 11 - Prob. 11.128QPCh. 11 - Prob. 11.129QPCh. 11 - Prob. 11.130QPCh. 11 - Prob. 11.131QPCh. 11 - Prob. 11.132QPCh. 11 - Prob. 11.133QPCh. 11 - Prob. 11.134QPCh. 11 - Prob. 11.135QPCh. 11 - Prob. 11.136QPCh. 11 - Prob. 11.137QPCh. 11 - Prob. 11.138QPCh. 11 - Prob. 11.139QPCh. 11 - Prob. 11.140QPCh. 11 - Prob. 11.141QPCh. 11 - At what temperature will He atoms have the same...Ch. 11 - Prob. 11.143QPCh. 11 - Prob. 11.144QPCh. 11 - Prob. 11.145QPCh. 11 - Prob. 11.146QPCh. 11 - Prob. 11.147QPCh. 11 - Prob. 11.148QPCh. 11 - Prob. 11.149QPCh. 11 - Prob. 11.150QPCh. 11 - Prob. 11.151QPCh. 11 - A 5.00-mole sample of NH3 gas is kept in a 1.92-L...Ch. 11 - Prob. 11.153QPCh. 11 - Prob. 11.154QPCh. 11 - Prob. 11.155QPCh. 11 - Prob. 11.156QPCh. 11 - Prob. 11.157QPCh. 11 - Prob. 11.158QPCh. 11 - Prob. 11.159QPCh. 11 - Prob. 11.160QPCh. 11 - Prob. 11.161QPCh. 11 - Determine the mole fraction of helium in a gaseous...Ch. 11 - Prob. 11.2KSPCh. 11 - Prob. 11.3KSPCh. 11 - Prob. 11.4KSP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781285199030
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Step by Step Stoichiometry Practice Problems | How to Pass ChemistryMole Conversions Made Easy: How to Convert Between Grams and Moles; Author: Ketzbook;https://www.youtube.com/watch?v=b2raanVWU6c;License: Standard YouTube License, CC-BY