Mountain Climbing. Mountaineers often use a rope to lower themselves down the face of a cliff (this is called rapelling ). They do this with their body nearly horizontal and their feet pushing against the cliff ( Fig. P11.45 ). Suppose that an 82.0-kg climber, who is 1.90 m tall and has a center of gravity 1.1 m from his feet, rappels down a vertical cliff with his body raised 35.0° above the horizontal. He holds the rope 1.40 m from his feet, and it makes a 25.0° angle with the cliff face. (a) What tension does his rope need to support? (b) Find the horizontal and vertical components of the force that the cliff face exerts on the climber’s feet. (c) What minimum coefficient of static friction is needed to prevent the climber’s feet from slipping on the cliff face if he has one foot at a time against the cliff?
Mountain Climbing. Mountaineers often use a rope to lower themselves down the face of a cliff (this is called rapelling ). They do this with their body nearly horizontal and their feet pushing against the cliff ( Fig. P11.45 ). Suppose that an 82.0-kg climber, who is 1.90 m tall and has a center of gravity 1.1 m from his feet, rappels down a vertical cliff with his body raised 35.0° above the horizontal. He holds the rope 1.40 m from his feet, and it makes a 25.0° angle with the cliff face. (a) What tension does his rope need to support? (b) Find the horizontal and vertical components of the force that the cliff face exerts on the climber’s feet. (c) What minimum coefficient of static friction is needed to prevent the climber’s feet from slipping on the cliff face if he has one foot at a time against the cliff?
Mountain Climbing. Mountaineers often use a rope to lower themselves down the face of a cliff (this is called rapelling). They do this with their body nearly horizontal and their feet pushing against the cliff (Fig. P11.45). Suppose that an 82.0-kg climber, who is 1.90 m tall and has a center of gravity 1.1 m from his feet, rappels down a vertical cliff with his body raised 35.0° above the horizontal. He holds the rope 1.40 m from his feet, and it makes a 25.0° angle with the cliff face. (a) What tension does his rope need to support? (b) Find the horizontal and vertical components of the force that the cliff face exerts on the climber’s feet. (c) What minimum coefficient of static friction is needed to prevent the climber’s feet from slipping on the cliff face if he has one foot at a time against the cliff?
Please solve and answer this problem correctly please. Thank you!!
You're on an interplanetary mission, in an orbit around the Sun. Suppose you make a maneuver that brings your perihelion in closer to the Sun but leaves your aphelion unchanged. Then you must have
Question 2 options:
sped up at perihelion
sped up at aphelion
slowed down at perihelion
slowed down at aphelion
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.