EBK GENERAL, ORGANIC, AND BIOLOGICAL CH
EBK GENERAL, ORGANIC, AND BIOLOGICAL CH
7th Edition
ISBN: 8220100853180
Author: STOKER
Publisher: CENGAGE L
Question
Book Icon
Chapter 11, Problem 11.26EP

(a)

Interpretation Introduction

Interpretation:

If half-life of a radionuclide is 5.0 min, then how much fraction of the radionuclide will be present undecayed after 20 min has to be calculated.

Concept Introduction:

Radioactive nuclides undergo disintegration by emission of radiation.  All the radioactive nuclide do not undergo the decay at a same rate.  Some decay rapidly and others decay very slowly.  The nuclear stability can be quantitatively expressed by using the half-life.

The time required for half quantity of the radioactive substance to undergo decay is known as half-life.  It is represented as t1/2.

The equation that relates amount of decayed radioactive material, amount of undecayed radioactive material and the time elapsed can be given as,

(Amountofradionuclideundecayedafternhalflives) =  (Originalamountofradionuclide)  x  (12n)

(a)

Expert Solution
Check Mark

Answer to Problem 11.26EP

Fraction of radionuclide that will remain after 20 min is 1/16.

Explanation of Solution

Half-life of the radionuclide is given as 5.0 min.  The number of half-lives can be calculated as shown below,

20 min   x  (1 half-life5 min) = n half-lives = 4half-lives

The fraction of nuclide that remains after 20 min is calculated as shown below,

(Amountofradionuclideundecayedafternhalflives) =  (Originalamountofradionuclide)  x  (12n) (12n) = 124 = 116

The fraction of sample that remains after 20 min is calculated as 1/16.

Conclusion

The fraction of the radionuclide sample that remains after 20 min is calculated.

(b)

Interpretation Introduction

Interpretation:

If half-life of a radionuclide is 5.0 min, then how much fraction of the radionuclide will be present undecayed after 30 min has to be calculated.

Concept Introduction:

Radioactive nuclides undergo disintegration by emission of radiation.  All the radioactive nuclide do not undergo the decay at a same rate.  Some decay rapidly and others decay very slowly.  The nuclear stability can be quantitatively expressed by using the half-life.

The time required for half quantity of the radioactive substance to undergo decay is known as half-life.  It is represented as t1/2.

The equation that relates amount of decayed radioactive material, amount of undecayed radioactive material and the time elapsed can be given as,

(Amountofradionuclideundecayedafternhalflives) =  (Originalamountofradionuclide)  x  (12n)

(b)

Expert Solution
Check Mark

Answer to Problem 11.26EP

Fraction of radionuclide that will remain after 30 min is 1/64.

Explanation of Solution

Half-life of the radionuclide is given as 5.0 min.  The number of half-lives can be calculated as shown below,

30 min   x  (1 half-life5 min) = n half-lives = 6half-lives

The fraction of nuclide that remains after 30 min is calculated as shown below,

(Amountofradionuclideundecayedafternhalflives) =  (Originalamountofradionuclide)  x  (12n) (12n) = 126 = 164

The fraction of sample that remains after 30 min is calculated as 1/64.

Conclusion

The fraction of the radionuclide sample that remains after 30 min is calculated.

(c)

Interpretation Introduction

Interpretation:

If half-life of a radionuclide is 5.0 min, then how much fraction of the radionuclide will be present undecayed after 3 half-lives has to be calculated.

Concept Introduction:

Radioactive nuclides undergo disintegration by emission of radiation.  All the radioactive nuclide do not undergo the decay at a same rate.  Some decay rapidly and others decay very slowly.  The nuclear stability can be quantitatively expressed by using the half-life.

The time required for half quantity of the radioactive substance to undergo decay is known as half-life.  It is represented as t1/2.

The equation that relates amount of decayed radioactive material, amount of undecayed radioactive material and the time elapsed can be given as,

(Amountofradionuclideundecayedafternhalflives) =  (Originalamountofradionuclide)  x  (12n)

(c)

Expert Solution
Check Mark

Answer to Problem 11.26EP

Fraction of radionuclide that will remain after 3 half-lives is 1/8.

Explanation of Solution

Given number of half-lives is 3 half-lives.

The fraction of nuclide that remains after 3 half-lives is calculated as shown below,

(Amountofradionuclideundecayedafternhalflives) =  (Originalamountofradionuclide)  x  (12n) (12n) = 123 = 18

The fraction of sample that remains after 3 half-lives is calculated as 1/8.

Conclusion

The fraction of the radionuclide sample that remains after 3 half-lives is calculated.

(d)

Interpretation Introduction

Interpretation:

If half-life of a radionuclide is 5.0 min, then how much fraction of the radionuclide will be present undecayed after 8 half-lives has to be calculated.

Concept Introduction:

Radioactive nuclides undergo disintegration by emission of radiation.  All the radioactive nuclide do not undergo the decay at a same rate.  Some decay rapidly and others decay very slowly.  The nuclear stability can be quantitatively expressed by using the half-life.

The time required for half quantity of the radioactive substance to undergo decay is known as half-life.  It is represented as t1/2.  Half-life for a radionuclide is constant.

The equation that relates amount of decayed radioactive material, amount of undecayed radioactive material and the time elapsed can be given as,

(Amountofradionuclideundecayedafternhalflives) =  (Originalamountofradionuclide)  x  (12n)

(d)

Expert Solution
Check Mark

Answer to Problem 11.26EP

Fraction of radionuclide that will remain after 8 half-lives is 1/256.

Explanation of Solution

Given number of half-lives is 8 half-lives.

The fraction of nuclide that remains after 8 half-lives is calculated as shown below,

(Amountofradionuclideundecayedafternhalflives) =  (Originalamountofradionuclide)  x  (12n) (12n) = 128 = 1256

The fraction of sample that remains after 8 half-lives is calculated as 1/256.

Conclusion

The fraction of the radionuclide sample that remains after 8 half-lives is calculated.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 11 Solutions

EBK GENERAL, ORGANIC, AND BIOLOGICAL CH

Ch. 11.4 - The half-life of cobalt-60 is 5.2 years. This...Ch. 11.4 - Prob. 2QQCh. 11.4 - Prob. 3QQCh. 11.4 - Prob. 4QQCh. 11.4 - Prob. 5QQCh. 11.5 - Prob. 1QQCh. 11.5 - The bombardment reaction involving 1123Na and 12H...Ch. 11.5 - Prob. 3QQCh. 11.5 - Prob. 4QQCh. 11.6 - Prob. 1QQCh. 11.6 - In the 14-step uranium-238 decay series a. all...Ch. 11.7 - Prob. 1QQCh. 11.7 - Prob. 2QQCh. 11.8 - Which of the following is not a form of ionizing...Ch. 11.8 - Prob. 2QQCh. 11.8 - Prob. 3QQCh. 11.8 - Prob. 4QQCh. 11.9 - Prob. 1QQCh. 11.9 - Which of the following correctly orders the three...Ch. 11.10 - Prob. 1QQCh. 11.10 - Prob. 2QQCh. 11.10 - Prob. 3QQCh. 11.11 - Prob. 1QQCh. 11.11 - Prob. 2QQCh. 11.11 - Prob. 3QQCh. 11.12 - Prob. 1QQCh. 11.12 - Prob. 2QQCh. 11.12 - Prob. 3QQCh. 11.12 - Prob. 4QQCh. 11.13 - Prob. 1QQCh. 11.13 - Prob. 2QQCh. 11 - Prob. 11.1EPCh. 11 - Prob. 11.2EPCh. 11 - Prob. 11.3EPCh. 11 - Prob. 11.4EPCh. 11 - Prob. 11.5EPCh. 11 - Prob. 11.6EPCh. 11 - Prob. 11.7EPCh. 11 - Prob. 11.8EPCh. 11 - Prob. 11.9EPCh. 11 - Prob. 11.10EPCh. 11 - Prob. 11.11EPCh. 11 - Prob. 11.12EPCh. 11 - Prob. 11.13EPCh. 11 - Prob. 11.14EPCh. 11 - Prob. 11.15EPCh. 11 - Prob. 11.16EPCh. 11 - Prob. 11.17EPCh. 11 - Prob. 11.18EPCh. 11 - Prob. 11.19EPCh. 11 - Prob. 11.20EPCh. 11 - Prob. 11.21EPCh. 11 - Prob. 11.22EPCh. 11 - Prob. 11.23EPCh. 11 - Prob. 11.24EPCh. 11 - Prob. 11.25EPCh. 11 - Prob. 11.26EPCh. 11 - Prob. 11.27EPCh. 11 - Prob. 11.28EPCh. 11 - Prob. 11.29EPCh. 11 - Fill in the blanks in each line of the following...Ch. 11 - Prob. 11.31EPCh. 11 - Prob. 11.32EPCh. 11 - Prob. 11.33EPCh. 11 - Prob. 11.34EPCh. 11 - Prob. 11.35EPCh. 11 - Prob. 11.36EPCh. 11 - Prob. 11.37EPCh. 11 - Prob. 11.38EPCh. 11 - Prob. 11.39EPCh. 11 - Prob. 11.40EPCh. 11 - Prob. 11.41EPCh. 11 - Prob. 11.42EPCh. 11 - Prob. 11.43EPCh. 11 - Prob. 11.44EPCh. 11 - Prob. 11.45EPCh. 11 - Prob. 11.46EPCh. 11 - Prob. 11.47EPCh. 11 - Prob. 11.48EPCh. 11 - Prob. 11.49EPCh. 11 - Prob. 11.50EPCh. 11 - Prob. 11.51EPCh. 11 - Prob. 11.52EPCh. 11 - Prob. 11.53EPCh. 11 - Prob. 11.54EPCh. 11 - Prob. 11.55EPCh. 11 - Prob. 11.56EPCh. 11 - Prob. 11.57EPCh. 11 - Write a chemical equation that involves water as a...Ch. 11 - Prob. 11.59EPCh. 11 - Prob. 11.60EPCh. 11 - Prob. 11.61EPCh. 11 - Prob. 11.62EPCh. 11 - Prob. 11.63EPCh. 11 - Prob. 11.64EPCh. 11 - Prob. 11.65EPCh. 11 - Prob. 11.66EPCh. 11 - Prob. 11.67EPCh. 11 - Prob. 11.68EPCh. 11 - Prob. 11.69EPCh. 11 - Prob. 11.70EPCh. 11 - Prob. 11.71EPCh. 11 - Prob. 11.72EPCh. 11 - Prob. 11.73EPCh. 11 - Prob. 11.74EPCh. 11 - Prob. 11.75EPCh. 11 - Prob. 11.76EPCh. 11 - Prob. 11.77EPCh. 11 - Prob. 11.78EPCh. 11 - Prob. 11.79EPCh. 11 - Prob. 11.80EPCh. 11 - Prob. 11.81EPCh. 11 - Prob. 11.82EPCh. 11 - Prob. 11.83EPCh. 11 - Prob. 11.84EPCh. 11 - Prob. 11.85EPCh. 11 - Prob. 11.86EPCh. 11 - Prob. 11.87EPCh. 11 - Prob. 11.88EPCh. 11 - Prob. 11.89EPCh. 11 - Prob. 11.90EP
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Text book image
Introductory Chemistry For Today
Chemistry
ISBN:9781285644561
Author:Seager
Publisher:Cengage
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning