![EBK GENERAL, ORGANIC, AND BIOLOGICAL CH](https://www.bartleby.com/isbn_cover_images/8220100853180/8220100853180_largeCoverImage.jpg)
(a)
Interpretation:
Concept Introduction:
If the reaction occurs in the nucleus of an atom then it is known as nuclear reaction. These reactions are not considered as ordinary
This nuclear reaction can be represented by nuclear equation. This is not a normal chemical equation. Nuclear equation considers the mass number and atomic number of the reactants and products. Unstable nucleus tends to emit radiation spontaneously. During this process the nuclide is transformed into nuclide of another element. Parent nuclide is the one which undergoes the radioactive decay. Daughter nuclide is the one that is formed from parent nuclide after radioactive decay.
The radioactive decay can take place by emission of alpha particle, beta particle or gamma ray emission. Alpha particle decay is a process in which an alpha particle is emitted. This results in the formation of nuclide of different element that has atomic number that is 2 less and mass number that is 4 less than the original nucleus. Beta particle decay is a process in which a beta particle is emitted. This produces a nuclide of different element similar to that of alpha particle decay. The mass number is same as that of parent nuclide while the atomic number increases by 1 unit. Gamma ray emission is a process in which the unstable nucleus emits gamma ray. This occurs along with alpha or beta particle emission. The gamma rays are not shown in the nuclear equation because they do not affect balancing the nuclear equation.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 11.24EP
Nuclear equation is,
Explanation of Solution
Given nuclear reaction is beta emission produces thallium-206 as product. This can be represented as,
The sum of subscript on both sides has to be equal and the sum of superscript on both sides has to be equal. In the problem statement it is given that beta emission takes place. Therefore, there won’t be any change in mass number but the atomic number of the parent nuclide will be 1 less than the daughter nuclide. This means the atomic number of the parent nuclide has to be 80. The element that has atomic number 80 is mercury. Therefore, the nuclear equation can be written as,
(b)
Interpretation:
Nuclear equation for cadmium-120 undergoing beta emission has to be written.
Concept Introduction:
If the reaction occurs in the nucleus of an atom then it is known as nuclear reaction. These reactions are not considered as ordinary chemical reactions because the electrons do not take part in reaction while the particle inside the nucleus does. Isotope and nuclide are almost similar terms. Isotopes refer to the same element that has different mass number while nuclide refers to atoms of same or different elements with specific atomic number and mass number.
This nuclear reaction can be represented by nuclear equation. This is not a normal chemical equation. Nuclear equation considers the mass number and atomic number of the reactants and products. Unstable nucleus tends to emit radiation spontaneously. During this process the nuclide is transformed into nuclide of another element. Parent nuclide is the one which undergoes the radioactive decay. Daughter nuclide is the one that is formed from parent nuclide after radioactive decay.
The radioactive decay can take place by emission of alpha particle, beta particle or gamma ray emission. Alpha particle decay is a process in which an alpha particle is emitted. This results in the formation of nuclide of different element that has atomic number that is 2 less and mass number that is 4 less than the original nucleus. Beta particle decay is a process in which a beta particle is emitted. This produces a nuclide of different element similar to that of alpha particle decay. The mass number is same as that of parent nuclide while the atomic number increases by 1 unit. Gamma ray emission is a process in which the unstable nucleus emits gamma ray. This occurs along with alpha or beta particle emission. The gamma rays are not shown in the nuclear equation because they do not affect balancing the nuclear equation.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 11.24EP
Nuclear equation is,
Explanation of Solution
Given nuclear reaction is cadmium-120 undergoes a beta emission. This can be represented as,
The sum of subscript on both sides has to be equal and the sum of superscript on both sides has to be equal. In the problem statement it is given that beta emission takes place. Therefore, there won’t be any change in mass number but the atomic number of the daughter nuclide nucleus will be 1 more than the parent nuclide. This means the atomic number of the daughter nuclide has to be 49. The element that has atomic number 49 is indium. Therefore, the nuclear equation can be written as,
(c)
Interpretation:
Nuclear equation for alpha emission that produces plutonium-241 as product has to be written.
Concept Introduction:
If the reaction occurs in the nucleus of an atom then it is known as nuclear reaction. These reactions are not considered as ordinary chemical reactions because the electrons do not take part in reaction while the particle inside the nucleus does. Isotope and nuclide are almost similar terms. Isotopes refer to the same element that has different mass number while nuclide refers to atoms of same or different elements with specific atomic number and mass number.
This nuclear reaction can be represented by nuclear equation. This is not a normal chemical equation. Nuclear equation considers the mass number and atomic number of the reactants and products. Unstable nucleus tends to emit radiation spontaneously. During this process the nuclide is transformed into nuclide of another element. Parent nuclide is the one which undergoes the radioactive decay. Daughter nuclide is the one that is formed from parent nuclide after radioactive decay.
The radioactive decay can take place by emission of alpha particle, beta particle or gamma ray emission. Alpha particle decay is a process in which an alpha particle is emitted. This results in the formation of nuclide of different element that has atomic number that is 2 less and mass number that is 4 less than the original nucleus. Beta particle decay is a process in which a beta particle is emitted. This produces a nuclide of different element similar to that of alpha particle decay. The mass number is same as that of parent nuclide while the atomic number increases by 1 unit. Gamma ray emission is a process in which the unstable nucleus emits gamma ray. This occurs along with alpha or beta particle emission. The gamma rays are not shown in the nuclear equation because they do not affect balancing the nuclear equation.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 11.24EP
Nuclear equation is,
Explanation of Solution
Given nuclear reaction is alpha emission produces plutonium-241 as product. This can be represented as,
The sum of subscript on both sides has to be equal and the sum of superscript on both sides has to be equal. In the problem statement it is given that alpha emission takes place. When alpha emission takes place the mass number of the formed daughter nuclide will be 4 less than the parent nuclide and atomic number will be 2 less than the parent nuclide. This means the atomic number of the parent nuclide has to be 96 and mass number has to be 245. The element that has atomic number 96 is curium. Therefore, the nuclear equation can be written as,
(d)
Interpretation:
Nuclear equation for radium-226 undergoing alpha emission has to be written.
Concept Introduction:
If the reaction occurs in the nucleus of an atom then it is known as nuclear reaction. These reactions are not considered as ordinary chemical reactions because the electrons do not take part in reaction while the particle inside the nucleus does. Isotope and nuclide are almost similar terms. Isotopes refer to the same element that has different mass number while nuclide refers to atoms of same or different elements with specific atomic number and mass number.
This nuclear reaction can be represented by nuclear equation. This is not a normal chemical equation. Nuclear equation considers the mass number and atomic number of the reactants and products. Unstable nucleus tends to emit radiation spontaneously. During this process the nuclide is transformed into nuclide of another element. Parent nuclide is the one which undergoes the radioactive decay. Daughter nuclide is the one that is formed from parent nuclide after radioactive decay.
The radioactive decay can take place by emission of alpha particle, beta particle or gamma ray emission. Alpha particle decay is a process in which an alpha particle is emitted. This results in the formation of nuclide of different element that has atomic number that is 2 less and mass number that is 4 less than the original nucleus. Beta particle decay is a process in which a beta particle is emitted. This produces a nuclide of different element similar to that of alpha particle decay. The mass number is same as that of parent nuclide while the atomic number increases by 1 unit. Gamma ray emission is a process in which the unstable nucleus emits gamma ray. This occurs along with alpha or beta particle emission. The gamma rays are not shown in the nuclear equation because they do not affect balancing the nuclear equation.
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 11.24EP
Nuclear equation is,
Explanation of Solution
Given nuclear reaction is alpha emission of radium-226. This can be represented as,
The sum of subscript on both sides has to be equal and the sum of superscript on both sides has to be equal. In the problem statement it is given that alpha emission takes place. When alpha emission takes place the mass number of the formed daughter nuclide will be 4 less than the parent nuclide and atomic number will be 2 less than the parent nuclide. This means the atomic number of the daughter nuclide has to be 86 and mass number has to be 222. The element that has atomic number 86 is radon. Therefore, the nuclear equation can be written as,
Want to see more full solutions like this?
Chapter 11 Solutions
EBK GENERAL, ORGANIC, AND BIOLOGICAL CH
- (6 pts - 2 pts each part) Although we focused our discussion on hydrogen light emission, all elements have distinctive emission spectra. Sodium (Na) is famous for its spectrum being dominated by two yellow emission lines at 589.0 and 589.6 nm, respectively. These lines result from electrons relaxing to the 3s subshell. a. What is the photon energy (in J) for one of these emission lines? Show your work. b. To what electronic transition in hydrogen is this photon energy closest to? Justify your answer-you shouldn't need to do numerical calculations. c. Consider the 3s subshell energy for Na - use 0 eV as the reference point for n=∞. What is the energy of the subshell that the electron relaxes from? Choose the same emission line that you did for part (a) and show your work.arrow_forwardNonearrow_forward(9 Pts) In one of the two Rare Earth element rows of the periodic table, identify an exception to the general ionization energy (IE) trend. For the two elements involved, answer the following questions. Be sure to cite sources for all physical data that you use. a. (2 pts) Identify the two elements and write their electronic configurations. b. (2 pts) Based on their configurations, propose a reason for the IE trend exception. c. (5 pts) Calculate effective nuclear charges for the last electron in each element and the Allred-Rochow electronegativity values for the two elements. Can any of these values explain the IE trend exception? Explain how (not) - include a description of how IE relates to electronegativity.arrow_forward
- Please explain thoroughly and provide steps to draw.arrow_forwardAs you can see in the picture, the instrument uses a Xe source. Given that the instrument is capable of measuring from 200-800nm, if Xe was not used, what other source(s) could be used? Refer to figure 7-3. How many monochrometers does this instrument have? Why? Trace the light as it goes from the Xenon lamp all the way to the circle just slightly to the right and a little bit down from S4. What do you think that circle is? In class we talked about many types of these, which kind do you think this one is for a fluorimeter? Why? Explain. What is/are some strategy(ies) that this instrument has for dealing with noise that you see present in the optics diagram? Why does a fluorescence cuvette have to be clear on four sides?arrow_forwardProvide steps and thoroughly solve.arrow_forward
- Nonearrow_forwardDevise a synthesis to prepare 4-tert-butyl-2-nitrotoluene from toluene. Complete the following reaction scheme. Part 1 of 4 Step 1 Step 2 A B Draw the structure for compound B, 4-tert-butyl-2-nitrotoluene. Click and drag to start drawing a structure. 'O Х ப:arrow_forwardWhat is N hybridized? sp3 or sp2? whyarrow_forward
- Date Unknown o Hydrated Salt Lab Sec. Name Trial I Trial 2 1. Mass of fired crucible and lid (g) 2. Mass of fired crucible, lid, and hydrated sah (g) 3. Instructor's approval of flame and apparatus 4. Mass of crucible, lid, and anhydrous salt Ist mass measurement (g) 2nd mass measurement (g) 3rd mass measurement (g). Desk No. Trial 3 48.833 46.808 213.692 51.507 9.359 46,615 50.296 48.211 45.351 50.142 48.146 45.1911 50.103 48.132 45.186 5. Final mass of crucible, lid, and anhydrous salt (g) 50.180 4.13 45.243 Calculations 1. Mass of hydrated salt (g) 2. Mass of anhydrous salt (g) 2.674 2.491 2.9239 1.3479 1.2959 1.5519 3. Mass of water lost (g) 1.32791969 1.322g 4. Percent by mass of volatile water in hydrated salt (%) 49.6% 48% 216.9% 5. Average percent HO in bydrated salt (%H,O) 5. Standard deviation of %H,O Relative standard deviation of %H,O in hydrated salt (RSD) how calculations on next page. 48.17% Data Analysis, B Data Analysis, C Data Analysis, D Experiment 5 89arrow_forwardConsidering the irregular electronic configurations we discussed for certain transitionmetals, think about the possibility of silicon (Si) having a [Ne]3s 2 3p 2 configuration vs.[Ne]3s 1 3p 3. Discuss the pros and cons of both configurations. Which one does Si actuallyadopt and why?arrow_forward(5 Pts) Currently, the last element in the periodic table is number 118, oganesson (Og). Channel your inner Dimitri Mendeleev and predict element 119’s electronic configuration, atomic mass, density, and either melting or boiling point. Justify your answers.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399692/9781337399692_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781559539418/9781559539418_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399425/9781337399425_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133109655/9781133109655_smallCoverImage.jpg)