
Concept explainers
(a)
Calculate the total consolidation settlement under the action of fill load.
(a)

Answer to Problem 11.1CTP
The total consolidation settlement
Explanation of Solution
Given information:
The thickness of fill material
The compacted unit weight of fill material
The length of the foundation
The breadth of the foundation
The depth of fill
The height of the layer silty sand
The height of the clay layer
The height of the peat layer
The dry unit weight of sand
The saturated unit weight of sand
The saturated unit weight of clay
The saturated unit weight of peat
The time
The properties of clay and organic layers are given in the Table.
Calculation:
Consider the unit weight of water
Calculate the distributed load
Substitute
Calculate the increase in vertical stress
Here,
For clay layer:
For the depth
Calculate the width
Substitute
Calculate the ratio
Substitute
Calculate the ratio
Substitute
Similarly calculate the remaining values and tabulate as in Table 1.
Refer Table 10.11 “Variation of
Take the value of
Take the value of
Calculate the value of
Similarly calculate the remaining values and tabulate as in Table 1.
Calculate the increase in vertical stress
Substitute
Similarly calculate the increase in vertical stress values and tabulate as in Table 1.
Show the increase in vertical stress for each depth below the center of the loaded area as in Table 1.
Depth, | |||||
1 | 4 | 3 | 0.75 | 0.823 | 28.82 |
1 | 4 | 5 | 1.25 | 0.599 | 20.98 |
1 | 4 | 7 | 1.75 | 0.403 | 14.11 |
Table 1
Refer to table 1.
Calculate the stress increase in the clay layer
Here,
Substitute
Calculate the average effective stress at the middle of the clay layer
Substitute
Calculate the primary consolidation settlement
Substitute
For peat layer:
For the depth
Calculate the ratio
Substitute
Similarly calculate the remaining values and tabulate as in Table 2.
Refer Table 10.11 “Variation of
Take the value of
Take the value of
Calculate the value of
Similarly calculate the remaining values and tabulate as in Table 2.
Calculate the increase in vertical stress
Substitute
Similarly calculate the increase in vertical stress values and tabulate as in Table 2.
Show the increase in vertical stress for each depth below the center of the loaded area as in Table 2.
Depth, | |||||
1 | 4 | 7 | 1.75 | 0.403 | 14.11 |
1 | 4 | 7.9 | 1.975 | 0.342 | 11.98 |
1 | 4 | 8.8 | 2.2 | 0.302 | 10.58 |
Table 2
Refer to table 2.
Calculate the stress increase in the peat layer
Substitute
Calculate the average effective stress at the middle of the clay layer
Substitute
Calculate the primary consolidation settlement
Substitute
Calculate the total consolidation settlement under the action of fill load
Substitute
Hence, the total consolidation settlement
(b)
Calculate the time for
(b)

Answer to Problem 11.1CTP
The time for
The time for
Explanation of Solution
Given information:
The thickness of fill material
The compacted unit weight of fill material
The length of the foundation
The breadth of the foundation
The depth of fill
The height of the layer silty sand
The height of the clay layer
The height of the peat layer
The dry unit weight of sand
The saturated unit weight of sand
The saturated unit weight of clay
The saturated unit weight of peat
The time
The properties of clay and organic layers are given in the Table.
Calculation:
The degree of consolidation
The clay layer is permeable and having less void ratio compared to peat layer. Hence, double drainage condition is assumed for the clay layer.
Calculate the time factor
Refer Table 11.7 “Variation of
Take the value of
Calculate the length of maximum drainage path
Substitute
Calculate the time for
Substitute
Hence, the time for
The peat layer is low permeable and having high void ratio compared to clay layer. Hence, single drainage condition is assumed for the peat layer.
Calculate the length of maximum drainage path
Substitute
Calculate the time for
Substitute
Hence, the time for
(c)
Calculate the secondary compression in each layer up to end of
(c)

Answer to Problem 11.1CTP
The secondary compression for clay
The secondary compression for peat
Explanation of Solution
Given information:
The thickness of fill material
The compacted unit weight of fill material
The length of the foundation
The breadth of the foundation
The depth of fill
The height of the layer silty sand
The height of the clay layer
The height of the peat layer
The dry unit weight of sand
The saturated unit weight of sand
The saturated unit weight of clay
The saturated unit weight of peat
The time
The properties of clay and organic layers are given in the Table.
Calculation:
Refer to part (b).
The time for
The time for
For clay:
Calculate the primary void ratio
Substitute
Calculate the void ratio at the end of primary consolidation
Substitute
Calculate the magnitude of secondary compression index
Here,
Substitute
Calculate the secondary compression
Substitute
Hence, the secondary compression for clay
For peat:
Calculate the primary void ratio
Substitute
Calculate the void ratio at the end of primary consolidation
Substitute
Calculate the magnitude of secondary compression index
Substitute
Calculate the secondary compression
Substitute
Hence, the secondary compression for peat
(d)
Calculate the total settlement after 18 months.
(d)

Answer to Problem 11.1CTP
The total settlement after 18 months is
Explanation of Solution
Given information:
The thickness of fill material
The compacted unit weight of fill material
The length of the foundation
The breadth of the foundation
The depth of fill
The height of the layer silty sand
The height of the clay layer
The height of the peat layer
The dry unit weight of sand
The saturated unit weight of sand
The saturated unit weight of clay
The saturated unit weight of peat
The time
The properties of clay and organic layers are given in the Table.
Calculation:
Refer to part (a).
The total consolidation settlement
Refer to part (c).
The secondary compression for clay
The secondary compression for peat
Calculate the total settlement after 18 months as shown below.
Substitute
Hence, the total settlement after 18 months is
(e)
Calculate the excess pore water pressure at point A two months after the application of the fill load.
(e)

Answer to Problem 11.1CTP
The excess pore water pressure at point A
Explanation of Solution
Given information:
The thickness of fill material
The compacted unit weight of fill material
The length of the foundation
The breadth of the foundation
The depth of fill
The height of the layer silty sand
The height of the clay layer
The height of the peat layer
The dry unit weight of sand
The saturated unit weight of sand
The saturated unit weight of clay
The saturated unit weight of peat
The time
The properties of clay and organic layers are given in the Table.
The depth
Calculation:
Refer to part (a).
The pore water pressure
Calculate the length of maximum drainage path
Substitute
Calculate the time factor
Substitute
Calculate the ratio
Substitute
Calculate the degree of consolidation
Refer Figure 11.29 “Variation of
Take the value of U as
Calculate the excess pore water pressure after 2 months
Substitute
Hence, the excess pore water pressure at point A
(f)
Calculate the effective stress at point A two months after the application of the fill load.
(f)

Answer to Problem 11.1CTP
The effective stress at point A is
Explanation of Solution
Given information:
The thickness of fill material
The compacted unit weight of fill material
The length of the foundation
The breadth of the foundation
The depth of fill
The height of the layer silty sand
The height of the clay layer
The height of the peat layer
The dry unit weight of sand
The saturated unit weight of sand
The saturated unit weight of clay
The saturated unit weight of peat
The time
The properties of clay and organic layers are given in the Table.
The depth
Calculation:
Refer to part (a).
The pore water pressure
Refer to part (e)
The excess pore water pressure at point A
Calculate the increase in effective stress
Substitute
Calculate the average effective stress at the point A
Substitute
Calculate the final effective stress at point A as shown below.
Substitute
Hence, the effective stress at point A is
(g)
Calculate the piezometer reading at point A two months after the application of the fill load.
(g)

Answer to Problem 11.1CTP
The piezometer reading at point A is
Explanation of Solution
Given information:
The thickness of fill material
The compacted unit weight of fill material
The length of the foundation
The breadth of the foundation
The depth of fill
The height of the layer silty sand
The height of the clay layer
The height of the peat layer
The dry unit weight of sand
The saturated unit weight of sand
The saturated unit weight of clay
The saturated unit weight of peat
The time
The properties of clay and organic layers are given in the Table.
The depth
Calculation:
Refer to part (e)
The excess pore water pressure at point A
The piezometer reading is the total pore water pressure.
Calculate the piezometer reading
Substitute
Hence, the piezometer reading at point A is
Want to see more full solutions like this?
Chapter 11 Solutions
Principles of Geotechnical Engineering (MindTap Course List)
- For the design of a shallow foundation, given the following: Soil: ' = 20° c=57 kN/m² Unit weight, y=18 kN/m³ Modulus of elasticity, E, = 1400 kN/m² Poisson's ratio, μs = 0.35 Foundation: L=2m B=1m D₁ =1m Calculate the ultimate bearing capacity. Use the equation: 1 qu= c'Ne Fes Fed Fec +qNqFqs FqdFqc + - BNF √s F√d F 2 For d'=20°, N = 14.83, N = 6.4, and N., = 5.39. (Enter your answer to three significant figures.) qu kN/m²arrow_forward1.0 m (Eccentricity in one direction only) = 0.15 m Qall = 0 1.5 m x 1.5 m Centerline An eccentrically loaded foundation is shown in the figure above. Use FS of 4 and determine the maximum allowable load that the foundation can carry if y = 16 kN/m³ and ' = 35°. Use Meyerhof's effective area method. For o' = 35°, N₁ = 33.30 and Ny = 48.03. (Enter your answer to three significant figures.) Qall kNarrow_forwardMethyl alcohol at 25°C (ρ = 789 kg/m³, μ = 5.6 × 10-4 kg/m∙s) flows through the system below at a rate of 0.015 m³/s. Fluid enters the suction line from reservoir 1 (left) through a sharp-edged inlet. The suction line is 10 cm commercial steel pipe, 15 m long. Flow passes through a pump with efficiency of 76%. Flow is discharged from the pump into a 5 cm line, through a fully open globe valve and a standard smooth threaded 90° elbow before reaching a long, straight discharge line. The discharge line is 5 cm commercial steel pipe, 200 m long. Flow then passes a second standard smooth threaded 90° elbow before discharging through a sharp-edged exit to reservoir 2 (right). Pipe lengths between the pump and valve, and connecting the second elbow to the exit are negligibly short compared to the suction and discharge lines. Volumes of reservoirs 1 and 2 are large compared to volumes extracted or supplied by the suction and discharge lines. Calculate the power that must be supplied to the…arrow_forward
- can you help me figure out the calculations so that i can input into autocad? Not apart of a graded assinment. Just a problem in class that i missed.arrow_forwardUse method of joints to determine forces in all members (all distances are in mm) Find the resultant force at the pin support and state its angle of inclinationarrow_forwardFor Problem 7.2, calculate the optimal cycle length (Webster’s formulation) and the corresponding effective green times (based on lane group v/c equalization). Assume lost time is 4 seconds per timing stage.arrow_forward
- 2. Use method of sections to determine all member forces in the figure below 1.3 m 15 kN N 10 E 9 E 8 E 7 6 E 1.7arrow_forwardUse method of sections to solve all member forces for the diagram dont mind the question down therearrow_forwardThe following data show spot speeds collected at a section of highway located in a residential area before and after an increase in speed enforcement activities. (All speeds are in mi/h.) Before After Before After 44 27 34 21 38 36 35 21 36 23 32 37 41 40 26 26 36 40 38 33 28 32 41 23 32 27 31 24 38 31 36 23 33 22 36 26 44 35 29 23 36 27 31 20 33 18 38 22 40 25 31 26 39 31 33 32 38 33 41 35 Using the student's t-test, determine whether there was a statistically significant difference in the average speeds at a significance level of a = 0.05 (the 95-percent confidence level.) O Yes, there was a statistically significant difference in the average speeds. ○ No, there was not a statistically significant difference in the average speeds. Also report, for both the before and after cases, the mean speed, standard deviation, 85th-percentile speed, and percentage of traffic exceeding the posted speed limit of 30 mi/h. (Enter all speeds and standard deviations in mi/h. Round your 85th-percentile…arrow_forward
- Calculate the BMs (bending moments) at all the joints of the beam shown in Fig.1 using the moment distribution method. The beam is subjected to an UDL of w=65m. L=4.5m L1= 1.8m. Assume the support at C is pinned, and A and B are roller supports. E = 200 GPa, I = 250x106 mm4.arrow_forward||| = 1% 11. LTE2 Voi) Vol) 1. LTE1 SEARCH 8 VYT bartleby.com/dashboard ASK √x MATH SOLV affected resale value at year 5, would that affect perceived value-in-use? How exactly? There is an error in submission of question Check it out! See if this is the solution you're looking for VIEW FULL SOLUTION Not what you're looking for? Keep submitting your original question SUBMIT QUESTIONarrow_forward. The average soil weights for a clay are the following: 2,050 pounds in Loose CY, 2,675pounds in Bank CY, and 2,835 pounds in Compacted CY What is the swell percentage for theclay?arrow_forward
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning



