
Computer Systems: A Programmer's Perspective (3rd Edition)
3rd Edition
ISBN: 9780134092669
Author: Bryant, Randal E. Bryant, David R. O'Hallaron, David R., Randal E.; O'Hallaron, Bryant/O'hallaron
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 11.12HW
Program Plan Intro
IP addresses:
- The IP address denotes an unsigned integer that is 32-bit.
- The IP addresses is been stored by network programs in IP address structure.
- The addresses present in IP address structure are stored in network byte order.
- An unsigned 32-bit integer is transformed from host byte order to network byte order by “htonl” function.
- An unsigned 32-bit integer is transformed from network byte order host byte order by “ntohl” function.
- The IP address is presented to humans in a form known as “dotted-decimal” notation.
- Each byte is been represented by its corresponding decimal value and is separated by a period from other bytes.
Passing program arguments to server:
- The arguments for “GET” requests are passed in the URI.
- The character “?” separates filename from the arguments.
- The character “&” separates each argument.
- The arguments do not allow spaces in it.
Server passes arguments to child:
- The server calls “fork” to create a child process and calls “execve” to run program in child’s context once it receives a request.
- The child process sets CGI environment variable values.
- The “adder” program can reference it at run time using “getenv” function of linux.
Output is sent by child:
- The dynamic content of a CGI program is to be sent to standard output.
- A CGI program sends dynamic content to standard output.
- It uses “dup2” function for redirecting standard output to connected descriptor associated with client.
- The result written to standard output by CGI program, it goes directly to client.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Please original work
Background information: Imagine you are a consultant for a fictional company, FutureTech Innovations, which specializes in advanced technology products. The company is interested in improving its decision-making processes by leveraging Business Analytics (BA) and Management Support Systems (MSS).
Talk about how Online Analytical Processing (OLAP) could be used to analyze data from multiple perspectives at FutureTech. What dimensions (e.g., time, product, region) would be important, and how would OLAP enhance decision-making?
Talk about the role of data visualization in helping FutureTech understand business performance. What types of visualizations (e.g., dashboards, charts) would be useful, and how would they assist in interpreting data?
Please cite in text references and add weblinks
Design a synchronous Up/Down counter to produce the following sequence
(4
9
2,0,7,6,3,1,5) using T flip-flop. The counter should count
up when Up/Down =1, and down when Up/Down = 0.
An active-HIGH pulse (HIGH level when asse rted, LOW level when not) is required on an i nverter input.(a) Draw the appropriate logic symbol, using t he distinctive shape and the negation indicat or, for the inverter in this application.(b) Describe the output when a positive-goin g pulse is applied to the input of an inverter.
Chapter 11 Solutions
Computer Systems: A Programmer's Perspective (3rd Edition)
Ch. 11.3 - Prob. 11.1PPCh. 11.3 - Prob. 11.2PPCh. 11.3 - Practice Problem 11.3 (solution page 967) Write a...Ch. 11.4 - Prob. 11.4PPCh. 11.5 - Prob. 11.5PPCh. 11 - Prob. 11.6HWCh. 11 - Prob. 11.7HWCh. 11 - Prob. 11.8HWCh. 11 - Modify TINY SO that when it serves static content,...Ch. 11 - Prob. 11.10HW
Knowledge Booster
Similar questions
- Convert this question to Subroutines ORG 100 LDA A1 STA T1 LDA B1 STA T2 LDA T1 I STA A1 I ISZ B1 ISZ A1 ISZ ENC BUN L2 //COMPUTER HLT L1, INC A1, HEX 5000 STA T2 1 B1, HEX 6000 ISZ T1 T1, HEX O ISZ T2 T2, HEX 0 ISZ DCD DCD, DEC -8 BUN L1 // DPNQVUFS ENC, DEC -8 LDA B1 I DEC, HEX FF L2, ADD DEC ENDarrow_forwardConvert this question to Subroutines > F = [(A. B) + (A'. B')]” = [(A. B)'. (A'. B')']' ORG 100 LDA A // Load A operand to AC HLT // END Program AND B CMA STA T1 LDA A CMA STA T2 LDA B CMA AND T2 CMA // Store AC result in T1 // Load A operand to AC // Complement result in AC // Store AC [A'] result in T2 // Load B operand to AC // Complement result in AC // AND B' with T2[A'] operand // Complement result in AC AND T1 // AND [(A'.B')'] with T1[(A.B)'] CMA // Complement result in AC STA F // Store AC result in F // AND A operand with B operand B, HEX 01 // Complement result in AC A, HEX 01 T1, HEX O T2, HEX 0 F, HEX 0 ENDarrow_forwardConvert this question to Subroutines L1, L2, ORG 100 SKI BUN L1 INP OUT STA CTR CLA // Check input operation ready // Loop back to L1 location // Enter counter (-10) to AC // display counter operand // Store counter in CTR // Clear AC STA LOCI // Clear content of location LOC ISZ LOC ISZ CTR BUN L2 // Go to next Address // Check loop duration // Loop back to L2 location // End program HLT CTR, HEX 0 LOC, HEX 0150 ENDarrow_forward
- Design the following Digital circuit in Verilog. IN1 IN2 MUX A Hint: a typical Demultiplexer is defined by a truth table like the following B DEMUX 1t04 demux_1t04 Sel W X Y Z "00" A 000 "01" 0 A 00 Sel sel demux_sel[1:0] "11" "10" 0 0 AO 000Aarrow_forwardhow do I do this in quartus with picture examples pleasearrow_forwardI need help with this problem and an step by step explanation of the solution from the image described below. (Introduction to Signals and Systems)arrow_forward
- x³dx+y³dy=0arrow_forwardI need help with this problem and an step by step explanation of the solution from the image described below. (Introduction to Signals and Systems)arrow_forwardImplement the code in MATLAB and send a picture of the implementation from within the program MATLAB code to analyze material shape % image = grayImage == using computer vision imread('material_image.jpg'); % Read the image rgb2gray(image); % Convert the image to grayscale BW = imbinarize(grayImage); % Convert the image to binary (black and white) Extract geometric properties (e.g., area % and bounding box) stats = regionprops (BW, 'Area', ; 'BoundingBox') Classify material based on shape % if stats. Area > 500 ; 'material = 'Plastic ; 'material = 'Wood else end ; disp(['The material is: ', material])arrow_forward
- Implement the code In MATLAB and send a picture of the Implementation from within the program Simulate data from magnetic sensor % magnetic FieldStrength = 0.5; % Magnetic field strength in Tesla Classify materials based on magnetic % field strength if magnetic FieldStrength > 0.3 material = 'Metal'; % Detect metal (e.g., iron) else material = 'Non-metal'; % Non-metal materials end ; disp(['Detected material: ', material])arrow_forwardImplement the code In MATLAB and send a picture of the Implementation from within the program Simulate infrared absorbance values % IR Absorbance = 0.75; % Infrared absorbance of the material Classify material based on infrared % absorbance if IR Absorbance > 0.7 material = 'Plastic'; % Plastic absorbs more IR material = 'Other'; % Other materials else like wood or metal end ;disp(['Material detected: ', material])arrow_forwardImplement the code In MATLAB and send a picture of the Implementation from within the program MATLAB code to detect magnetic materials % Assume we have a reading from a magnetic % sensor magnetic field = 0.8; % Magnetic field strength in Tesla If the material is magnetic (like iron), % there will be a higher reading if magnetic field > 0.5 'material = 'Magnetic (Metal) material = 'Non-Magnetic (Plastic/ else ; 'Wood) end ;disp(['The material is: ', material])arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Computer Networking: A Top-Down Approach (7th Edi...Computer EngineeringISBN:9780133594140Author:James Kurose, Keith RossPublisher:PEARSONComputer Organization and Design MIPS Edition, Fi...Computer EngineeringISBN:9780124077263Author:David A. Patterson, John L. HennessyPublisher:Elsevier ScienceNetwork+ Guide to Networks (MindTap Course List)Computer EngineeringISBN:9781337569330Author:Jill West, Tamara Dean, Jean AndrewsPublisher:Cengage Learning
- Concepts of Database ManagementComputer EngineeringISBN:9781337093422Author:Joy L. Starks, Philip J. Pratt, Mary Z. LastPublisher:Cengage LearningPrelude to ProgrammingComputer EngineeringISBN:9780133750423Author:VENIT, StewartPublisher:Pearson EducationSc Business Data Communications and Networking, T...Computer EngineeringISBN:9781119368830Author:FITZGERALDPublisher:WILEY

Computer Networking: A Top-Down Approach (7th Edi...
Computer Engineering
ISBN:9780133594140
Author:James Kurose, Keith Ross
Publisher:PEARSON

Computer Organization and Design MIPS Edition, Fi...
Computer Engineering
ISBN:9780124077263
Author:David A. Patterson, John L. Hennessy
Publisher:Elsevier Science

Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:9781337569330
Author:Jill West, Tamara Dean, Jean Andrews
Publisher:Cengage Learning

Concepts of Database Management
Computer Engineering
ISBN:9781337093422
Author:Joy L. Starks, Philip J. Pratt, Mary Z. Last
Publisher:Cengage Learning

Prelude to Programming
Computer Engineering
ISBN:9780133750423
Author:VENIT, Stewart
Publisher:Pearson Education

Sc Business Data Communications and Networking, T...
Computer Engineering
ISBN:9781119368830
Author:FITZGERALD
Publisher:WILEY