CONNECT FOR THERMODYNAMICS: AN ENGINEERI
9th Edition
ISBN: 9781260048636
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10.9, Problem 4P
A steady-flow Carnot cycle uses water as the working fluid. Water changes from saturated liquid to saturated vapor as heat is transferred to it from a source at 250°C. Heat rejection takes place at a pressure of 20 kPa. Show the cycle on a T-s diagram relative to the saturation lines, and determine (a) the thermal efficiency, (b) the amount of heat rejected, and (c) the net work output.
10–4 Repeat Prob. 10–3 for a heat rejection pressure of 10 kPa.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
T
B
A
D
Consider the cycle in the diagram (very similar to the Rankine Cycle) using water as the working fluid.
Process A-B: A saturated mixture of water is pumped from low pressure to a high pressure saturated liquid in an iso-
entropic (and adiabatic) process.
Process B-C: The high pressure saturated liquid enters a boiler where it is heated at constant pressure process by an
external heat source to a super-heated vapor.
Process C-D: The super-heated vapor goes through a turbine, generating power exiting as a saturated vapor.
Assume an iso-entropic (and adiabatic) process and neglect kinetic energy and potential energy changes.
Process D-A: The saturated vapor then enters a condenser where it is condensed at a constant pressure process
back to its original state.
The boiler operates at 8 MPa (points B & C) and the condenser operates at 200 kPa (points A & D). Assume a mass flow
rate of 1 kg/s.
Make a table of the temperature, pressure, volume, internal energy, enthalpy, entropy and…
T
B
A
D
Consider the cycle in the diagram (very similar to the Rankine Cycle) using water as the working fluid.
Process A-B: A saturated mixture of water is pumped from low pressure to a high pressure
saturated liquid in an iso-entropic (and adiabatic) process.
Process B-C: The high pressure saturated liquid enters a boiler where it is heated at constant
pressure process by an external heat source to a super-heated vapor.
Process C-D: The super-heated vapor goes through a turbine, generating power exiting as a
saturated vapor. Assume an iso-entropic (and adiabatic) process and neglect kinetic energy and
potential energy changes.
Process D-A: The saturated vapor then enters a condenser where it is condensed at a constant
pressure process back to its original state.
The boiler operates at 10 MPa (points B & C) and the condenser operates at 100 kPa (points A & D).
Assume a mass flow rate of 1 kg/s.
a) Make a table of the temperature, pressure, volume, internal energy, enthalpy, entropy…
Please help me with this problem and show the full solution. Thank you very much
Chapter 10 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
Ch. 10.9 - Why is the Carnot cycle not a realistic model for...Ch. 10.9 - Why is excessive moisture in steam undesirable in...Ch. 10.9 - A steady-flow Carnot cycle uses water as the...Ch. 10.9 - A steady-flow Carnot cycle uses water as the...Ch. 10.9 - Consider a steady-flow Carnot cycle with water as...Ch. 10.9 - Water enters the boiler of a steady-flow Carnot...Ch. 10.9 - What four processes make up the simple ideal...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...
Ch. 10.9 - How do actual vapor power cycles differ from...Ch. 10.9 - Compare the pressures at the inlet and the exit of...Ch. 10.9 - The entropy of steam increases in actual steam...Ch. 10.9 - Is it possible to maintain a pressure of 10 kPa in...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A simple ideal Rankine cycle which uses water as...Ch. 10.9 - Consider a solar-pond power plant that operates on...Ch. 10.9 - Consider a 210-MW steam power plant that operates...Ch. 10.9 - Consider a 210-MW steam power plant that operates...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A steam Rankine cycle operates between the...Ch. 10.9 - A steam Rankine cycle operates between the...Ch. 10.9 - A simple Rankine cycle uses water as the working...Ch. 10.9 - The net work output and the thermal efficiency for...Ch. 10.9 - A binary geothermal power plant uses geothermal...Ch. 10.9 - Consider a coal-fired steam power plant that...Ch. 10.9 - Show the ideal Rankine cycle with three stages of...Ch. 10.9 - Is there an optimal pressure for reheating the...Ch. 10.9 - How do the following quantities change when a...Ch. 10.9 - Consider a simple ideal Rankine cycle and an ideal...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - Steam enters the high-pressure turbine of a steam...Ch. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - A steam power plant operates on an ideal reheat...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Repeat Prob. 1041 assuming both the pump and the...Ch. 10.9 - Prob. 43PCh. 10.9 - Prob. 44PCh. 10.9 - How do open feedwater heaters differ from closed...Ch. 10.9 - How do the following quantities change when the...Ch. 10.9 - Cold feedwater enters a 200-kPa open feedwater...Ch. 10.9 - In a regenerative Rankine cycle. the closed...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - Consider an ideal steam regenerative Rankine cycle...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - Repeat Prob. 1060, but replace the open feedwater...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - Prob. 64PCh. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Prob. 67PCh. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - The schematic of a single-flash geothermal power...Ch. 10.9 - What is the difference between cogeneration and...Ch. 10.9 - Prob. 71PCh. 10.9 - Prob. 72PCh. 10.9 - Consider a cogeneration plant for which the...Ch. 10.9 - Steam is generated in the boiler of a cogeneration...Ch. 10.9 - A large food-processing plant requires 1.5 lbm/s...Ch. 10.9 - An ideal cogeneration steam plant is to generate...Ch. 10.9 - Steam is generated in the boiler of a cogeneration...Ch. 10.9 - Consider a cogeneration power plant modified with...Ch. 10.9 - Prob. 80PCh. 10.9 - Why is the combined gassteam cycle more efficient...Ch. 10.9 - The gas-turbine portion of a combined gassteam...Ch. 10.9 - A combined gassteam power cycle uses a simple gas...Ch. 10.9 - Reconsider Prob. 1083. An ideal regenerator is...Ch. 10.9 - Reconsider Prob. 1083. Determine which components...Ch. 10.9 - Consider a combined gassteam power plant that has...Ch. 10.9 - Prob. 89PCh. 10.9 - What is the difference between the binary vapor...Ch. 10.9 - Why is mercury a suitable working fluid for the...Ch. 10.9 - Why is steam not an ideal working fluid for vapor...Ch. 10.9 - By writing an energy balance on the heat exchanger...Ch. 10.9 - Prob. 94RPCh. 10.9 - Steam enters the turbine of a steam power plant...Ch. 10.9 - Consider a steam power plant operating on the...Ch. 10.9 - A steam power plant operates on an ideal Rankine...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Repeat Prob. 1098 assuming both the pump and the...Ch. 10.9 - Consider an ideal reheatregenerative Rankine cycle...Ch. 10.9 - Prob. 101RPCh. 10.9 - A textile plant requires 4 kg/s of saturated steam...Ch. 10.9 - Consider a cogeneration power plant that is...Ch. 10.9 - Prob. 104RPCh. 10.9 - Prob. 105RPCh. 10.9 - Reconsider Prob. 10105E. It has been suggested...Ch. 10.9 - Reconsider Prob. 10106E. During winter, the system...Ch. 10.9 - Prob. 108RPCh. 10.9 - Prob. 109RPCh. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A Rankine steam cycle modified for reheat, a...Ch. 10.9 - Show that the thermal efficiency of a combined...Ch. 10.9 - Prob. 118RPCh. 10.9 - A solar collector system delivers heat to a power...Ch. 10.9 - Starting with Eq. 1020, show that the exergy...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle. If the...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a steady-flow Carnot cycle with water as...Ch. 10.9 - Prob. 126FEPCh. 10.9 - Prob. 127FEPCh. 10.9 - A simple ideal Rankine cycle operates between the...Ch. 10.9 - Pressurized feedwater in a steam power plant is to...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a combined gas-steam power plant. Water...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A-Carnot cycle using air as the working fluid. The hot and cold reservoirs are 1000°C and 25°C respectively. The maximum and minimum pressures in the cycle are 150bar and 1bar. Draw the P- V and T-S diagrams and calculate the properties at each point of the cycle, the cycle efficiency, and the work ratio. B-State the Carnot principles.arrow_forwardA steady-flow Carnot cycle uses water as the working fluid. Water changes from saturated liquid to saturated vapor as heat is transferred to it from a source at (250°C). Heat rejection takes place at a pressure of (20 kPa). Show the cycle on a (T-s) diagram relative to the saturation lines, and determine (a) The thermal efficiency, (b) the amount of heat rejected, in kJ/kg (c) The network output.arrow_forwardPlease solve this problem, Thank you very mucharrow_forward
- R-134a enters the compressor of a refrigerator at 140 kPa and -10 ˚C at a rate of 0.3m3/min and leaves at 1 MPa. The isentropic efficiency of the compressor is 78%. The refrigerant enters the throttling valve at 0.95 MPa and 30 ˚C, and leaves the evaporator as saturated vapor at -18.5 ˚C. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the power input to the compressor, (b) the rate of heat removal from the refrigerated space, and (c) the pressure drop and (d) rate of heat gain in the line between the evaporator and the compressor.arrow_forwardA gas-turbine power plant operating on Brayton cycle has a pressure ratio of 8. The gas temperature is 300 K at the compressor inlet and 1300 K at the turbine inlet. Draw the cycle on T-s and determine the thermal efficiency in the following cases a- Isentropic process for compressor and turbine. b- 80 % isentropic efficiency for compressor and turbine.arrow_forwardAn Ericsson cycle uses helium as the working fluid. The isothermal compression process begins at 540 R and 17.6 psia and 75 Btu/lbm of heat rejected. Heat addition occurs at 1980 R. Draw the pV and T-s diagram (labeling the different conditions). Determine (a) the cycle maximum pressure; (b) the net work produced per unit mass; (c) the thermal efficiency.arrow_forward
- I need the answer as soon as possiblearrow_forward1-A steady-flow Carnot cycle uses water as the working fluid. Water changes from saturated liquid to saturated vapor as heat is transferred to it from a source at 250°C. Heat rejection takes place at a pressure of 20 kPa. Show the cycle on a T-s diagram relative to the saturation lines, and determine (a) the thermal efficiency, (b) the amount of heat rejected, in kJ/kg, and (c) the net work output.arrow_forwardAnswer with proper explanations.arrow_forward
- H6arrow_forwardRequired information Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 5 kPa. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the quality of the steam at the turbine exit. Use steam tables. The quality of the steam at the turbine exit isarrow_forward10-1 Consider a steady-flow Carnot cycle with water as the working fluid. The maximum and minimum temperatures in the cycle are 350 and 75°C. The quality of water is 0.891 at the beginning of the heat-rejection process and 0.1 at the end. Use steam tables. Determine the pressure at the turbine inlet. Use steam tables.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY