CONNECT FOR THERMODYNAMICS: AN ENGINEERI
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
9th Edition
ISBN: 9781260048636
Author: CENGEL
Publisher: MCG
bartleby

Videos

Textbook Question
Book Icon
Chapter 10.9, Problem 69P

The schematic of a single-flash geothermal power plant with state numbers is given in Fig. P10–69. Geothermal resource exists as saturated liquid at 230°C. The geothermal liquid is withdrawn from the production well at a rate of 230 kg/s and is flashed to a pressure of 500 kPa by an essentially isenthalpic flashing process where the resulting vapor is separated from the liquid in a separator and is directed to the turbine. The steam leaves the turbine at 10 kPa with a moisture content of 5 percent and enters the condenser where it is condensed; it is routed to a reinjection well along with the liquid coming off the separator. Determine (a) the power output of the turbine and the thermal efficiency of the plant, (b) the exergy of the geothermal liquid at the exit of the flash chamber, and the exergy destructions and the second-law efficiencies for (c) the turbine and (d) the entire plant.

Chapter 10.9, Problem 69P, The schematic of a single-flash geothermal power plant with state numbers is given in Fig. P1069.

FIGURE P10–69

(a)

Expert Solution
Check Mark
To determine

The temperature of the steam after the flashing process and the power output from the turbine if the pressure of the steam at the exit of flash chamber is 1MPa.

Answer to Problem 69P

The power output turbine is 10.8kW.

The thermal efficiency of the plant is 5.3%.

Explanation of Solution

Draw schematic diagram of single flash geothermal power plant as shown in Figure 1.

CONNECT FOR THERMODYNAMICS: AN ENGINEERI, Chapter 10.9, Problem 69P

Write the general energy rate balance equation.

E˙inE˙out=ΔE˙system (I)

Here, the rate of total energy in is E˙in, the rate of total energy out is E˙out, and the rate of change in net energy of the system is ΔE˙system.

Consider the system operates at steady state. Hence, the rate of change in net energy of the system becomes zero.

ΔE˙system=0

The Equation (I) is reduced as follows.

E˙inE˙out=0E˙in=E˙out

Refer Figure 1.

The flash chamber is nothing but the expansion valve. At expansion valve, the enthalpy kept constant.

Express the energy balance equation for the flash chamber.

h1=h2

Express the energy balance equation for the separator.

m˙2h2=m˙3h3+m˙liquidhliquid (II)

Express the energy balance equation for the turbine.

W˙T,out=m˙3(h3h4) (III)

At state 1:

The geothermal water is extracted at the state of saturated liquid at the temperature of 230°C.

The enthalpy and entropy at state 1 is as follows.

h1=hf@230°Cs1=sf@230°C

Refer Table A-4, “Saturated water-Temperature table”

The enthalpy (h1) and entropy (s1) corresponding to the temperature of 230°C is 990.14kJ/kg and 2.6100kJ/kgK respectively.

Refer Table A-1, “Molar mass, gas constant, and critical-point properties”.

At state 2:

The exit pressure of the flash chamber is 500kPa.

The geothermal steam is flashed at constant enthalpy. The exit steam of the flash chamber is at the quality of x2.

x2=h2hf,2hfg,2 (IV)

Here, the fluid enthalpy is hf, the vaporization enthalpy is hfg and subscript 2 indicates state 2.

Refer Table A-5, “Saturated water-Pressure table”.

Obtain the following corresponding to the pressure of 500kPa.

hf,2=640.09kJ/kghfg,2=2108.0kJ/kgsf,2=1.8604kJ/kgKsfg,2=4.9603kJ/kgK

The entropy (s2) at state 2 is expressed as follows.

s2=sf,2+x2sfg,2 (V)

Write the formula for mass flow rate of vapor at entering the turbine.

m˙3=x2m˙2 (VI)

Here, the mass flow rate is m˙ and the subscripts 2 and 3 indicates the process states.

At state 3:

There is no pressure drop in the separator. The separator separates vapor and liquid form the flashed steam, and the separated vapor alone sent to the turbine.

The enthalpy (h3) and entropy (s3) at state 3 is expressed as follows.

h3=hg@500kPas3=sg@500kPa

Refer Table A-5, “Saturated water-Pressure table”.

The enthalpy (h3) and entropy (s3) at state 3 corresponding to the pressure of 500kPa is 2748.1kJ/kg and 6.8207kJ/kgK respectively.

At state 4:

The steam is at the state of saturated mixture at the pressure of 10kPa with 5% of moisture content.

The quality at state 4 is as follows.

x4=100%5%=95%×1100=0.95

The enthalpy (h4) and entropy (s4) at state 4 is expressed as follows.

h4=hf,4+x4hfg,4 (VII)

s4=sf,4+x4sfg,4 (VIII)

Refer Table A-5, “Saturated water-Pressure table”.

Obtain the following corresponding to the pressure of 10kPa.

hf,4=191.81kJ/kghfg,4=2392.1kJ/kgsf,4=0.6492kJ/kgKsfg,4=7.4996kJ/kgK

At state 6:

The saturated water only exits at the bottom of the separator. The enthalpy (h6) and entropy (s6) at state 6 is expressed as follows.

h6=hf@10kPas6=sf@10kPa

Refer Table A-5, “Saturated water-Pressure table”.

The enthalpy (h6) and entropy (s6) at state 6 corresponding to the pressure of 500kPa is 640.09kJ/kg and 1.8604kJ/kgK respectively.

Write the formula for net energy input of the plant.

E˙in=m˙1(h1h0) (IX)

Write the formula for thermal efficiency.

ηth=W˙T,outE˙in (X)

Consider, the surrounding temperature is 25°C and the water re injected in to the well is at saturated liquid state.

T0=25°C=298K

The surrounding enthalpy (h0) and entropy (s0) is expressed as follows.

h0=hf@298Ks0=sf@298K

Refer Table A-4, “Saturated water-Temperature table”.

The enthalpy (h0) and entropy (s0) corresponding to the temperature of 298K is 104.83kJ/kg and 0.3672kJ/kgK respectively.

Conclusion:

Substitute 990.14kJ/kg for h2, 640.09kJ/kg for hf,2, and 2108.0kJ/kg for hfg,2 in Equation (IV).

x2=990.14kJ/kg640.09kJ/kg2108.0kJ/kg=0.1661

Substitute 1.8604kJ/kgK for sf,2, 0.1661 for x2, and 4.9603kJ/kgK for sfg,2 in Equation (V).

s2=1.8604kJ/kgK+0.1661(4.9603kJ/kgK)=1.8604kJ/kgK+0.8239kJ/kgK=2.6843kJ/kgK

Substitute 0.166 for x2 and 230kg/s for m˙2 in Equation (VI).

m˙3=0.1661(230kg/s)=38.203kg/s

Substitute 191.81kJ/kg for hf,4, 0.95 for x4, and 2392.1kJ/kg for hfg,4 in

Equation (VII).

h4=191.81kJ/kg+0.95(2392.1kJ/kg)=191.81kJ/kg+2272.495kJ/kg=2464.305kJ/kg2464.3kJ/kg

Substitute 0.6492kJ/kgK for sf,4, 0.95 for x4, and 7.4996kJ/kgK for sfg,4 in Equation (VIII).

s4=0.6492kJ/kgK+0.95(7.4996kJ/kgK)=0.6492kJ/kgK+7.1246kJ/kgK=7.7738kJ/kgK

Substitute 38.203kg/s for m˙3, 2748.1kJ/kg for h3, and 2464.3kJ/kg for h4 in

Equation (III).

W˙T,out=38.203kg/s(2748.1kJ/kg2464.3kJ/kg)=38.203kg/s(283.8kJ/kg)=10842.0114kJ/s×1kW1kJ/s=10842kW×1MW103kW

=10.843MW10.8MW

Thus, the power output turbine is 10.8kW.

Substitute 230kg/s for m˙1, 990.14kJ/kg for h1, and 104.83kJ/kg for h0 in

Equation (IX).

E˙in=230kg/s(990.14kJ/kg104.83kJ/kg)=230kg/s(885.31kJ/kg)=203621.3kJ/s×1kW1kJ/s=230621.3kW

Substitute 10842kW for W˙T,out and 230621.3kW for E˙in in Equation (X).

ηth=10842kW230621.3kW=0.05324×100=5.324%5.3%

Thus, the thermal efficiency of the plant is 5.3%.

(b)

Expert Solution
Check Mark
To determine

The exergy of the geothermal liquid at the exit of the flash chamber, and the exergy destructions.

Answer to Problem 69P

The exergy of the geothermal liquid at the exit of the flash chamber, and the exergy destruction is 90.2864kJ/kg and 17.3MW respectively.

Explanation of Solution

Write the formula for exergy of the steam at their respective process state.

ψi=(hih0)T0(sis0) (XI)

Here, the enthalpy is h, the temperature is T, the entropy is s, subscripts i indicates the ith process state, and the subscript 0 indicates the surrounding state.

Write the formula for rate of exergy destruction at the exit of flash chamber (state 6).

X˙6=m˙6ψ6 (XII)

Here, the rate of exergy destruction at state 6 is X˙6.

Conclusion:

For process state 1:

hi=h1=990.14kJ/kgsi=s1=2.6100kJ/kgK

Substitute 990.14kJ/kg for hi, 104.83kJ/kg for h0, 298K for T0, 2.6100kJ/kgK for si, and 0.3672kJ/kgK for s0 in Equation (XI).

ψ1=(990.14kJ/kg104.83kJ/kg)298K(2.6100kJ/kgK0.3672kJ/kgK)=885.31kJ/kg668.3544kJ/kg=216.9556kJ/kg

For process state 2:

hi=h2=990.14kJ/kgsi=s2=2.6843kJ/kgK

Substitute 990.14kJ/kg for hi, 104.83kJ/kg for h0, 298K for T0, 2.6843kJ/kgK for si, and 0.3672kJ/kgK for s0 in Equation (XI).

ψ2=(990.14kJ/kg104.83kJ/kg)298K(2.6843kJ/kgK0.3672kJ/kgK)=885.31kJ/kg690.4958kJ/kg=194.814kJ/kg

For process state 3:

hi=h3=2748.1kJ/kgsi=s3=6.8207kJ/kgK

Substitute 2748.1kJ/kg for hi, 104.83kJ/kg for h0, 298K for T0, 6.8207kJ/kgK for si, and 0.3672kJ/kgK for s0 in Equation (XI).

ψ3=(2748.1kJ/kg104.83kJ/kg)298K(6.8207kJ/kgK0.3672kJ/kgK)=2643.27kJ/kg1923.143kJ/kg=720.127kJ/kg

For process state 4:

hi=h4=2464.3kJ/kgsi=s4=7.7738kJ/kgK

Substitute 2464.3kJ/kg for hi, 104.83kJ/kg for h0, 298K for T0, 7.7738kJ/kgK for si, and 0.3672kJ/kgK for s0 in Equation (XI).

ψ4=(2464.3kJ/kg104.83kJ/kg)298K(7.7738kJ/kgK0.3672kJ/kgK)=2359.47kJ/kg2207.1668kJ/kg=152.3032kJ/kg

For process state 6:

hi=h6=640.09kJ/kgsi=s6=1.8604kJ/kgK

Substitute 640.09kJ/kg for hi, 104.83kJ/kg for h0, 298K for T0, 1.8604kJ/kgK for si, and 0.3672kJ/kgK for s0 in Equation (XI).

ψ6=(640.09kJ/kg104.83kJ/kg)298K(1.8604kJ/kgK0.3672kJ/kgK)=535.26kJ/kg444.9736kJ/kg=90.2864kJ/kg

The mass flow rate of water at the bottom exit of separator (state 6) is expressed as follows.

m˙6=m˙1m˙3=230kg/s38.203kg/s=191.797kg/s

Substitute 191.797kg/s for m˙6 and 90.2864kJ/kg for ψ6 in Equation (XII).

X˙6=191.797kg/s(90.2864kJ/kg)=17316.66066kJ/s×1MW103kJ/s=17.3166MW17.3MW

Thus, the exergy of the geothermal liquid at the exit of the flash chamber, and the exergy destruction is 90.2864kJ/kg and 17.3MW respectively.

(c)

Expert Solution
Check Mark
To determine

The exergy destruction and second law of efficiency for the turbine.

Answer to Problem 69P

The exergy destruction and second law of efficiency for the turbine is 10.9MW and 50% respectively.

Explanation of Solution

Write the formula for rate of exergy destruction of the turbine.

X˙dest,T=m˙3(ψ3ψ4)W˙T,out (XIII)

Write the formula for second law of efficiency of the turbine.

ηII,T=W˙T,outm˙3(ψ3ψ4) (XIV)

Conclusion:

Substitute 38.203kg/s for m˙3, 720.127kJ/kg for ψ3, 152.3032kJ/kg for ψ4, and 10842kW for W˙T,out in Equation (XIII).

X˙dest,T=38.203kg/s(720.127kJ/kg152.3032kJ/kg)10842kW=21692.5726kJ/s×1kW1kJ/s10842kW=21692.5726kW10842kW=10850.5726kW×1MW103kW

=10.85MW10.9MW

Substitute 38.203kg/s for m˙3, 720.127kJ/kg for ψ3, 152.3032kJ/kg for ψ4, and 10842kW for W˙T,out in Equation (XIV).

ηII,T=10842kW38.203kg/s(720.127kJ/kg152.3032kJ/kg)=10842kW21692.5726kJ/s×1kW1kJ/s=10842kW21692.5726kW=0.4998×100

=49.98%50%

Thus, the exergy destruction and second law of efficiency for the turbine is 10.9MW and 50% respectively.

(d)

Expert Solution
Check Mark
To determine

The exergy destruction and second law of efficiency for the entire plant.

Answer to Problem 69P

The exergy destruction and second law of efficiency for the plant is 39MW and 21.7% respectively.

Explanation of Solution

Write the formula for rate of exergy input of the plant.

X˙in, Plant=m˙1ψ1 (XV)

Write the formula for rate of exergy destruction of the plant.

X˙dest, Plant=X˙in,PlantW˙T,out (XVI)

Write the formula for second law of efficiency of the plant.

ηII,Plant=W˙T,outX˙dest, Plant (XVII)

Conclusion:

Substitute 230kg/s for m˙1 and 216.9556kJ/kg for ψ1 in Equation (XV).

X˙in, Plant=230kg/s(216.9556kJ/kg)=49899.788kJ/s×1kW1kJ/s=49899.788kW

Substitute 49899.788kW for X˙in, Plant and 10842kW for W˙T,out in Equation (XVI).

X˙dest,Plant=49899.788kW10842kW=39057.788kW×1MW103kW=39.057MW39MW

Substitute 10842kW for W˙T,out and 49899.788kW for X˙in, Plant in Equation (XVII).

ηII,T=10842kW49899.788kW=0.217275×100=21.7275%21.7%

Thus, the exergy destruction and second law of efficiency for the plant is 39MW and 21.7% respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
B: Solid rotating shaft used in the boat with high speed shown in Figure. The amount of power transmitted at the greatest torque is 224 kW with 130 r.p.m. Used DE-Goodman theory to determine the shaft diameter. Take the shaft material is annealed AISI 1030, the endurance limit of 18.86 kpsi and a factor of safety 1. Which criterion is more conservative? Note: all dimensions in mm. 1 AA Motor 300 Thrust Bearing Sprocket 100 9750 เอ
Q2: The plate material of a pressure vessel is AISI 1050 QT 205 °C. The plate is rolled to a diameter of 1.2 m. The two sides of the plate are connected via a riveted joint as shown below. If the rivet material is G10500 with HB=197 and all rivet sizes M31. Find the required rivet size when the pressure vessel is subjected to an internal pressure of 500 MPa. Take safety factor = 2. 1.2m A B' A Chope olm 10.5 0.23 hope
Continuity equation A y x dx D T معادلة الاستمرارية Ly X Q/Prove that ди хе + ♥+ ㅇ? he me ze ོ༞“༠ ?

Chapter 10 Solutions

CONNECT FOR THERMODYNAMICS: AN ENGINEERI

Ch. 10.9 - How do actual vapor power cycles differ from...Ch. 10.9 - Compare the pressures at the inlet and the exit of...Ch. 10.9 - The entropy of steam increases in actual steam...Ch. 10.9 - Is it possible to maintain a pressure of 10 kPa in...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A simple ideal Rankine cycle which uses water as...Ch. 10.9 - Consider a solar-pond power plant that operates on...Ch. 10.9 - Consider a 210-MW steam power plant that operates...Ch. 10.9 - Consider a 210-MW steam power plant that operates...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A steam Rankine cycle operates between the...Ch. 10.9 - A steam Rankine cycle operates between the...Ch. 10.9 - A simple Rankine cycle uses water as the working...Ch. 10.9 - The net work output and the thermal efficiency for...Ch. 10.9 - A binary geothermal power plant uses geothermal...Ch. 10.9 - Consider a coal-fired steam power plant that...Ch. 10.9 - Show the ideal Rankine cycle with three stages of...Ch. 10.9 - Is there an optimal pressure for reheating the...Ch. 10.9 - How do the following quantities change when a...Ch. 10.9 - Consider a simple ideal Rankine cycle and an ideal...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - Steam enters the high-pressure turbine of a steam...Ch. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - A steam power plant operates on an ideal reheat...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Repeat Prob. 1041 assuming both the pump and the...Ch. 10.9 - Prob. 43PCh. 10.9 - Prob. 44PCh. 10.9 - How do open feedwater heaters differ from closed...Ch. 10.9 - How do the following quantities change when the...Ch. 10.9 - Cold feedwater enters a 200-kPa open feedwater...Ch. 10.9 - In a regenerative Rankine cycle. the closed...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - Consider an ideal steam regenerative Rankine cycle...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - Repeat Prob. 1060, but replace the open feedwater...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - Prob. 64PCh. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Prob. 67PCh. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - The schematic of a single-flash geothermal power...Ch. 10.9 - What is the difference between cogeneration and...Ch. 10.9 - Prob. 71PCh. 10.9 - Prob. 72PCh. 10.9 - Consider a cogeneration plant for which the...Ch. 10.9 - Steam is generated in the boiler of a cogeneration...Ch. 10.9 - A large food-processing plant requires 1.5 lbm/s...Ch. 10.9 - An ideal cogeneration steam plant is to generate...Ch. 10.9 - Steam is generated in the boiler of a cogeneration...Ch. 10.9 - Consider a cogeneration power plant modified with...Ch. 10.9 - Prob. 80PCh. 10.9 - Why is the combined gassteam cycle more efficient...Ch. 10.9 - The gas-turbine portion of a combined gassteam...Ch. 10.9 - A combined gassteam power cycle uses a simple gas...Ch. 10.9 - Reconsider Prob. 1083. An ideal regenerator is...Ch. 10.9 - Reconsider Prob. 1083. Determine which components...Ch. 10.9 - Consider a combined gassteam power plant that has...Ch. 10.9 - Prob. 89PCh. 10.9 - What is the difference between the binary vapor...Ch. 10.9 - Why is mercury a suitable working fluid for the...Ch. 10.9 - Why is steam not an ideal working fluid for vapor...Ch. 10.9 - By writing an energy balance on the heat exchanger...Ch. 10.9 - Prob. 94RPCh. 10.9 - Steam enters the turbine of a steam power plant...Ch. 10.9 - Consider a steam power plant operating on the...Ch. 10.9 - A steam power plant operates on an ideal Rankine...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Repeat Prob. 1098 assuming both the pump and the...Ch. 10.9 - Consider an ideal reheatregenerative Rankine cycle...Ch. 10.9 - Prob. 101RPCh. 10.9 - A textile plant requires 4 kg/s of saturated steam...Ch. 10.9 - Consider a cogeneration power plant that is...Ch. 10.9 - Prob. 104RPCh. 10.9 - Prob. 105RPCh. 10.9 - Reconsider Prob. 10105E. It has been suggested...Ch. 10.9 - Reconsider Prob. 10106E. During winter, the system...Ch. 10.9 - Prob. 108RPCh. 10.9 - Prob. 109RPCh. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A Rankine steam cycle modified for reheat, a...Ch. 10.9 - Show that the thermal efficiency of a combined...Ch. 10.9 - Prob. 118RPCh. 10.9 - A solar collector system delivers heat to a power...Ch. 10.9 - Starting with Eq. 1020, show that the exergy...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle. If the...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a steady-flow Carnot cycle with water as...Ch. 10.9 - Prob. 126FEPCh. 10.9 - Prob. 127FEPCh. 10.9 - A simple ideal Rankine cycle operates between the...Ch. 10.9 - Pressurized feedwater in a steam power plant is to...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a combined gas-steam power plant. Water...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY