EBK MECHANICS OF MATERIALS
7th Edition
ISBN: 8220100257063
Author: BEER
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10.4, Problem 112P
To determine
Find the thickness of the lightest aluminum tube.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
SA steel tube of 80-mm outer diameter is to carry a 93-kN load P
with an eccentricity of 20 mm. The tubes available for use are made
with wall thicknesses in increments of 3 mm from 6 mm to 15 mm.
Using the allowable-stress method, determine the lightest tube that
can be used. ASsume E = 200 GPa and øy = 250 MPa.
Show all work and units
Do not round intermediate answers. Give your final answer(s) to three decimal places. Check your units.
Knowing that the central portion of the link BD has a uniform cross-sectional area of 1350 mm, determine the maguitude of
the load P for which the normal stress in that portion of BD is 20 MPa
P= 10.975
kN
24
B
I=0.3 m
0.73 m
0.62 m
Check Anewer lor the Problum
Chapter 10 Solutions
EBK MECHANICS OF MATERIALS
Ch. 10.1 - Knowing that the spring at A is of constant k and...Ch. 10.1 - Two rigid bars AC and BC are connected by a pin at...Ch. 10.1 - 10.3 and 10.4 Two rigid bars AC and BC are...Ch. 10.1 - 10.3 and 10.4 Two rigid bars AC and BC are...Ch. 10.1 - The steel rod BC is attached to the rigid bar AB...Ch. 10.1 - The rigid rod AB is attached to a hinge at A and...Ch. 10.1 - The rigid bar AD is attached to two springs of...Ch. 10.1 - A frame consists of four L-shaped members...Ch. 10.1 - Determine the critical load of a pin-ended steel...Ch. 10.1 - Determine the critical load of a pin-ended wooden...
Ch. 10.1 - A column of effective length L can be made by...Ch. 10.1 - A compression member of 1.5-m effective length...Ch. 10.1 - Determine the radius of the round strut so that...Ch. 10.1 - Determine (a) the critical load for the square...Ch. 10.1 - A column with the cross section shown has a...Ch. 10.1 - A column is made from half of a W360 216...Ch. 10.1 - A column of 22-ft effective length is made by...Ch. 10.1 - A single compression member of 8.2-m effective...Ch. 10.1 - Knowing that P = 5.2 kN, determine the factor of...Ch. 10.1 - Members AB and CD are 30-mm-diameter steel rods,...Ch. 10.1 - The uniform brass bar AB has a rectangular cross...Ch. 10.1 - A 1-in.-square aluminum strut is maintained in the...Ch. 10.1 - A 1-in.-square aluminum strut is maintained in the...Ch. 10.1 - Column ABC has a uniform rectangular cross section...Ch. 10.1 - Column ABC has a uniform rectangular cross section...Ch. 10.1 - Column AB carries a centric load P of magnitude 15...Ch. 10.1 - Each of the five struts shown consists of a solid...Ch. 10.1 - A rigid block of mass m can be supported in each...Ch. 10.2 - An axial load P = 15 kN is applied at point D that...Ch. 10.2 - An axial load P is applied to the 32-mm-diameter...Ch. 10.2 - The line of action of the 310-kN axial load is...Ch. 10.2 - Prob. 32PCh. 10.2 - An axial load P is applied to the 32-mm-square...Ch. 10.2 - Prob. 34PCh. 10.2 - Prob. 35PCh. 10.2 - Prob. 36PCh. 10.2 - Solve Prob. 10.36, assuming that the axial load P...Ch. 10.2 - The line of action of the axial load P is parallel...Ch. 10.2 - Prob. 39PCh. 10.2 - Prob. 40PCh. 10.2 - The steel bar AB has a 3838-in. square cross...Ch. 10.2 - For the bar of Prob. 10.41, determine the required...Ch. 10.2 - A 3.5-m-long steel tube having the cross section...Ch. 10.2 - Prob. 44PCh. 10.2 - An axial load P is applied to the W8 28...Ch. 10.2 - Prob. 46PCh. 10.2 - A 100-kN axial load P is applied to the W150 18...Ch. 10.2 - A 26-kip axial load P is applied to a W6 12...Ch. 10.2 - Prob. 49PCh. 10.2 - Axial loads of magnitude P = 84 kN are applied...Ch. 10.2 - An axial load of magnitude P = 220 kN is applied...Ch. 10.2 - Prob. 52PCh. 10.2 - Prob. 53PCh. 10.2 - Prob. 54PCh. 10.2 - Axial loads of magnitude P = 175 kN are applied...Ch. 10.2 - Prob. 56PCh. 10.3 - Using allowable stress design, determine the...Ch. 10.3 - Prob. 58PCh. 10.3 - Prob. 59PCh. 10.3 - A column having a 3.5-m effective length is made...Ch. 10.3 - Prob. 61PCh. 10.3 - Bar AB is free at its end A and fixed at its base...Ch. 10.3 - Prob. 63PCh. 10.3 - Prob. 64PCh. 10.3 - A compression member of 8.2-ft effective length is...Ch. 10.3 - A compression member of 9-m effective length is...Ch. 10.3 - A column of 6.4-m effective length is obtained by...Ch. 10.3 - A column of 21-ft effective length is obtained by...Ch. 10.3 - Prob. 69PCh. 10.3 - Prob. 70PCh. 10.3 - Prob. 71PCh. 10.3 - Prob. 72PCh. 10.3 - Prob. 73PCh. 10.3 - For a rod made of aluminum alloy 2014-T6, select...Ch. 10.3 - Prob. 75PCh. 10.3 - Prob. 76PCh. 10.3 - A column of 4.6-m effective length must carry a...Ch. 10.3 - A column of 22.5-ft effective length must carry a...Ch. 10.3 - Prob. 79PCh. 10.3 - A centric load P must be supported by the steel...Ch. 10.3 - A square steel tube having the cross section shown...Ch. 10.3 - Prob. 82PCh. 10.3 - Prob. 83PCh. 10.3 - Two 89 64-mm angles are bolted together as shown...Ch. 10.3 - Prob. 85PCh. 10.3 - Prob. 86PCh. 10.3 - Prob. 87PCh. 10.3 - Prob. 88PCh. 10.4 - An eccentric load is applied at a point 22 mm from...Ch. 10.4 - Prob. 90PCh. 10.4 - Prob. 91PCh. 10.4 - Solve Prob. 10.91 using the interaction method and...Ch. 10.4 - A column of 5.5-m effective length is made of the...Ch. 10.4 - Prob. 94PCh. 10.4 - A steel compression member of 9-ft effective...Ch. 10.4 - Prob. 96PCh. 10.4 - Two L4 3 38-in. steel angles are welded together...Ch. 10.4 - Solve Prob. 10.97 using the interaction method...Ch. 10.4 - A rectangular column is made of a grade of sawn...Ch. 10.4 - Prob. 100PCh. 10.4 - Prob. 101PCh. 10.4 - Prob. 102PCh. 10.4 - Prob. 103PCh. 10.4 - Prob. 104PCh. 10.4 - A steel tube of 80-mm outer diameter is to carry a...Ch. 10.4 - Prob. 106PCh. 10.4 - Prob. 107PCh. 10.4 - Prob. 108PCh. 10.4 - Prob. 109PCh. 10.4 - Prob. 110PCh. 10.4 - Prob. 111PCh. 10.4 - Prob. 112PCh. 10.4 - Prob. 113PCh. 10.4 - Prob. 114PCh. 10.4 - Prob. 115PCh. 10.4 - A steel column of 7.2-m effective length is to...Ch. 10 - Determine (a) the critical load for the steel...Ch. 10 - Prob. 118RPCh. 10 - Prob. 119RPCh. 10 - (a) Considering only buckling in the plane of the...Ch. 10 - Member AB consists of a single C130 3 10.4 steel...Ch. 10 - The line of action of the 75-kip axial load is...Ch. 10 - Prob. 123RPCh. 10 - Prob. 124RPCh. 10 - A rectangular column with a 4.4-m effective length...Ch. 10 - Prob. 126RPCh. 10 - Prob. 127RPCh. 10 - Prob. 128RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A column of 6.7-m effective length is obtained by connecting four L89 x 89 x 9.5-mm steel angles with lacing bars as shown. Using allowable stress design, determine the allowable centric load for the column. Use oy= 345 MPa and E= 200 GPa. Neglect the effect of the lacing bars on the moment of inertia. (Round the final answer to the nearest whole number.) | 89 mm mm The allowable centric load is kN.arrow_forward17. The frame shown carries a load P = 2000 lb. If a = b = 10 inches, c = 18 inches, and s= 3/8 inch. Determine the stress in strut BD in ksi. a. 30.5 b. 34.2 a b PA D B C. d. 39.0 46.1 C 22 24 section A-A: Is 18. The motion of the follower of a cam-follower system is governed by x = R(1 + 1/2 cosoot). If R = 70 mm and co = 62.8 rad/min, determine the magnitude of the acceleration of the follower, in mm/s², when t = 0.8 s. a. 18 C. b. 20 d.arrow_forwardLink AC is made of a steel with a 65-ksi ultimate normal stress and has a 14 × 1214 × 12 -in. uniform rectangular cross section. It is connected to a support at A and to member BCD at C by 3838 -in.-diameter pins, while member BCD is connected to its support at B by a 516516 -in.-diameter pin. All of the pins are made of a steel with a 25-ksi ultimate shearing stress and are in single shear. Knowing that a factor of safety of 3.05 is desired, determine the largest load P that can be applied at D. Note that link AC is not reinforced around the pin holes. The largest load P that can be applied at D is lb.arrow_forward
- strength of material MENG222 Please solve the problem step by step and make your line clear and don't forget to show me your steparrow_forwardA lightweight lever consists of a 0.8m solid bar rigidly mounted to a large structure and a 0.5m solid lever welded to the solid bar. Using the loading indicated and assuming the material has a Young's Modulus of 200 GPa and a shear modulus of 86 GPa, calculate: (a) the maximum stress at Point A on the Cross-section a-a, (b) the vertical displacement of the knob when the load is applied relative to Cross-section a-a. B C 50 mm Section ad a 0.8 m 0.5 m 100 N 38 mm Focusarrow_forward5. The construction of the post is shown below. The mechanical tube has an OD of 3.0 in and a thickness of 0.220 in. The concrete foundation has a dimension W of 8 inches. What is the largest load F, in kips, that can be applied if the bearing stress between the mechanical tubing and the steel plate is 80 ksi? a. b. 96.7 124 W a. 10.7 b. 12.4 F W c. d. 132 154 Mechanical tubing Steel plate Concrete 6. A 6 mm diameter rod, of unknown material, is subjected to 10 kN tensile load. In the process, its length increased from 70 mm to 72 mm. If stress is proportional to strain, determine the modulus of elasticity, in GPa, of the material? C. 19.5 d. Answer is not among the choicesarrow_forward
- In the structure shown, an 8-mm-diameter pin is used at A and 12 mmdiameter pins are used at B and D. Knowing that the ultimate shearingstress is 100 MPa at all connections and the ultimate normal stress is 250 MPa in each of the two links joining B and D, determine the allowable load P if an overall factor of safety of 3.0 is desired.arrow_forwardProblem 17.3 The assembly consists of two A-36 steel rods and a rigid beam BD (meaning that BD does not deform/deflect compared with the elongation of the rods). Each rod has a diameter of 0.75 inches. If a force of 10 kips is applied to the bar as shown, determine the vertical displacement of the load. 3 ft 2 ft B E -1.25 ft- 0.75 ft 1 ft 10 kiparrow_forward! Required information Problem 01.061 - A two link assembly with point loads Two horizontal 13-kip forces (P) are applied to pin B of the assembly shown. A 0.8-in. diameter pin is used at each connection. 0.3 in 0.5 in 18 in Problem 01.061.c - Bearing stress in a link Determine the average bearing stress at Bin member BC The average bearing stress at Bin member BC is 24.65 ksi.arrow_forward
- mechanical engineerarrow_forwardFor the frame shown, the wood has a normal failure stress of 42 MPa, and a shear failure stress of 10 MPa. If P = 40 KN and the factor of safety against failure is 2, Determine the required minimum thickness t of member AB. а. 19.76 шп 18.76 mn b. 16.76 mm 17.76 mm Determine the required minimum edge distance b. a. 53.56 mm c. 73.56 mm b. 63.56 mm d. 43.56 mm A 75 mm 40° 40° C в 75/mmarrow_forwardLink AC is made of a steel with a 65-ksi ultimate normal stress and has a ½½ x ½ -in. uniform rectangular cross section. It is 16 3 connected to a support at A and to member BCD at C by -in.-diameter pins, while member BCD is connected to its support at B by a 5 -in.-diameter pin. All of the pins are made of a steel with a 25-ksi ultimate shearing stress and are in single shear. Knowing that a factor of safety of 3.35 is desired, determine the largest load P that can be applied at D. Note that link AC is not reinforced around the pin holes. 8 in. B +in. C |6 in. |4 in.- P The largest load P that can be applied at Dis lb.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
How to Measure Threads; Author: PracticalMachinist;https://www.youtube.com/watch?v=Uuy7EViS7Kc;License: Standard Youtube License