EBK MECHANICS OF MATERIALS
EBK MECHANICS OF MATERIALS
7th Edition
ISBN: 8220100257063
Author: BEER
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 10.4, Problem 106P
To determine

Find the thickness of the lightest tube.

Expert Solution & Answer
Check Mark

Answer to Problem 106P

The thickness of the lightest steel tube is 15mm_.

Explanation of Solution

Given information:

The length of the steel tube is L=2.2m.

The outer diameter of the steel tube is do=80mm.

The magnitude of the axial load is P=165kN.

The eccentricity of the load in steel tube is e=15mm.

The allowable yield stress of the steel tube is σY=250MPa.

The modulus of elasticity of the steel tube is E=200GPa.

The allowable stress in bending is (σall)bending=150MPa

Calculation:

The effective length of the column (Le) is equal to the length of the column (L).

Le=L=2.2m

Find the inner diameter of the steel tube (di) using the relation.

di=do2t

Here, the thickness of the steel tube is t.

Substitute 80 mm for do.

di=802t

Find the cross sectional area of the steel tube (A) using the equation.

A=π(do2di2)4

Substitute 80 mm for do and (802t) for di.

A=π×(802(802t)2)4

Find the moment of inertia of the steel tube (I) using the equation.

I=π(do4di4)64

Substitute 80 mm for do and (802t) for di.

I=π(804(802t)4)64

Find the minimum radius of gyration (r) using the relation.

r=IA

Substitute π(804(802t)4)64 for I and π×(802(802t)2)4 for A.

r=(π(804(802t)4)64)(π×(802(802t)2)4)=(804(802t)4)16(802(802t)2)

Find the distance between the neutral axis to the extreme fibre (c) using the relation.

c=do2

Substitute 80 mm for do.

c=802=40mm

Find the slenderness ratio Lr using the equation.

Lr=4.71EσY

Here, the modulus of elasticity of the material is E and the allowable yield strength is σY

Substitute 200 GPa for E and 250 MPa for σY:

Lr=4.71200GPa×1,000MPa1GPa250=133.22

Find the ratio of the effective length to the minimum radius of gyration.

Ler=2.2m×1,000mm1m(804(802t)4)16(802(802t)2)=8,800(804(802t)4)(802(802t)2) (1)

Consider 8,800(804(802t)4)(802(802t)2)<Lr=133.22.

Find the effective stress (σe) using the equation.

σe=π2E(Le/r)2

Substitute 200 GPa for E and 8,800(804(802t)4)(802(802t)2) for Le/r.

σe=π2×200GPa×1,000 MPa1GPa(8,800(804(802t)4)(802(802t)2))2=π2×200GPa×1,000 MPa1GPa×(804(802t)4)(802(802t)2)(8,800)2=0.02549(804(802t)4)(802(802t)2)

Find the critical stress (σcr) using the relation.

σcr=[0.658σYσe]σY

Substitute 250 MPa for σY and 0.02549(804(802t)4)(802(802t)2) for σe.

σcr=[0.658250[0.02549(804(802t)4)(802(802t)2)]]250=[0.6589,807.891(802(802t)2)(804(802t)4)]250

Find the allowable stress (σall)bending due to centric load using the relation.

(σall)centric=σcr1.67

Substitute [0.6589,807.891(802(802t)2)(804(802t)4)]250 for σcr.

(σall)centric=[0.6589,807.891(802(802t)2)(804(802t)4)]2501.67=149.701[0.6589,807.891(802(802t)2)(804(802t)4)]

Find the maximum moment (M) using the relation.

M=Pe

Here, the allowable load is P and the eccentricity of the load is e.

Substitute 165 kN for P and 15 mm for e.

M=165kN×1,000N1kN×15=2,475,000N-mm

Find the thickness of the lightest tube (t) using the centric and bending equation.

P/A(σall)centric+Mc/I(σall)bending1

Substitute 165 kN for P, π×(802(802t)2)4 for A, 149.701[0.6589,807.891(802(802t)2)(804(802t)4)] for (σall)centric, 2,475,000 N-mm for M, 40 mm for c, π(804(802t)4)64 for I, and 150 MPa for (σall),bending.

(165kN×1,000N1kNπ×(802(802t)2)4)149.701[0.6589,807.891(802(802t)2)(804(802t)4)]+(2,475,000×40π(804(802t)4)64)150=1

Solve the equation;

The thickness is t=13.901mm.

The nearest 3 mm increment of the thickness is 15 mm.

Check:

Substitute 15 mm for t in Equation (1).

Ler=8,800(804(802(15))4)(802(802(15))2)=8,80034,710,0003,900=93.28<Lr=133.22

Therefore, the thickness of the lightest steel tube is 15mm_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
الثانية Babakt Momentum equation for Boundary Layer S SS -Txfriction dray Momentum equation for Boundary Layer What laws are important for resolving issues 2 How to draw. 3 What's Point about this.
R αι g The system given on the left, consists of three pulleys and the depicted vertical ropes. Given: ri J₁, m1 R = 2r; απ r2, J2, m₂ m1; m2; M3 J1 J2 J3 J3, m3 a) Determine the radii 2 and 3.
B: Solid rotating shaft used in the boat with high speed shown in Figure. The amount of power transmitted at the greatest torque is 224 kW with 130 r.p.m. Used DE-Goodman theory to determine the shaft diameter. Take the shaft material is annealed AISI 1030, the endurance limit of 18.86 kpsi and a factor of safety 1. Which criterion is more conservative? Note: all dimensions in mm. 1 AA Motor 300 Thrust Bearing Sprocket 100 9750 เอ

Chapter 10 Solutions

EBK MECHANICS OF MATERIALS

Ch. 10.1 - A column of effective length L can be made by...Ch. 10.1 - A compression member of 1.5-m effective length...Ch. 10.1 - Determine the radius of the round strut so that...Ch. 10.1 - Determine (a) the critical load for the square...Ch. 10.1 - A column with the cross section shown has a...Ch. 10.1 - A column is made from half of a W360 216...Ch. 10.1 - A column of 22-ft effective length is made by...Ch. 10.1 - A single compression member of 8.2-m effective...Ch. 10.1 - Knowing that P = 5.2 kN, determine the factor of...Ch. 10.1 - Members AB and CD are 30-mm-diameter steel rods,...Ch. 10.1 - The uniform brass bar AB has a rectangular cross...Ch. 10.1 - A 1-in.-square aluminum strut is maintained in the...Ch. 10.1 - A 1-in.-square aluminum strut is maintained in the...Ch. 10.1 - Column ABC has a uniform rectangular cross section...Ch. 10.1 - Column ABC has a uniform rectangular cross section...Ch. 10.1 - Column AB carries a centric load P of magnitude 15...Ch. 10.1 - Each of the five struts shown consists of a solid...Ch. 10.1 - A rigid block of mass m can be supported in each...Ch. 10.2 - An axial load P = 15 kN is applied at point D that...Ch. 10.2 - An axial load P is applied to the 32-mm-diameter...Ch. 10.2 - The line of action of the 310-kN axial load is...Ch. 10.2 - Prob. 32PCh. 10.2 - An axial load P is applied to the 32-mm-square...Ch. 10.2 - Prob. 34PCh. 10.2 - Prob. 35PCh. 10.2 - Prob. 36PCh. 10.2 - Solve Prob. 10.36, assuming that the axial load P...Ch. 10.2 - The line of action of the axial load P is parallel...Ch. 10.2 - Prob. 39PCh. 10.2 - Prob. 40PCh. 10.2 - The steel bar AB has a 3838-in. square cross...Ch. 10.2 - For the bar of Prob. 10.41, determine the required...Ch. 10.2 - A 3.5-m-long steel tube having the cross section...Ch. 10.2 - Prob. 44PCh. 10.2 - An axial load P is applied to the W8 28...Ch. 10.2 - Prob. 46PCh. 10.2 - A 100-kN axial load P is applied to the W150 18...Ch. 10.2 - A 26-kip axial load P is applied to a W6 12...Ch. 10.2 - Prob. 49PCh. 10.2 - Axial loads of magnitude P = 84 kN are applied...Ch. 10.2 - An axial load of magnitude P = 220 kN is applied...Ch. 10.2 - Prob. 52PCh. 10.2 - Prob. 53PCh. 10.2 - Prob. 54PCh. 10.2 - Axial loads of magnitude P = 175 kN are applied...Ch. 10.2 - Prob. 56PCh. 10.3 - Using allowable stress design, determine the...Ch. 10.3 - Prob. 58PCh. 10.3 - Prob. 59PCh. 10.3 - A column having a 3.5-m effective length is made...Ch. 10.3 - Prob. 61PCh. 10.3 - Bar AB is free at its end A and fixed at its base...Ch. 10.3 - Prob. 63PCh. 10.3 - Prob. 64PCh. 10.3 - A compression member of 8.2-ft effective length is...Ch. 10.3 - A compression member of 9-m effective length is...Ch. 10.3 - A column of 6.4-m effective length is obtained by...Ch. 10.3 - A column of 21-ft effective length is obtained by...Ch. 10.3 - Prob. 69PCh. 10.3 - Prob. 70PCh. 10.3 - Prob. 71PCh. 10.3 - Prob. 72PCh. 10.3 - Prob. 73PCh. 10.3 - For a rod made of aluminum alloy 2014-T6, select...Ch. 10.3 - Prob. 75PCh. 10.3 - Prob. 76PCh. 10.3 - A column of 4.6-m effective length must carry a...Ch. 10.3 - A column of 22.5-ft effective length must carry a...Ch. 10.3 - Prob. 79PCh. 10.3 - A centric load P must be supported by the steel...Ch. 10.3 - A square steel tube having the cross section shown...Ch. 10.3 - Prob. 82PCh. 10.3 - Prob. 83PCh. 10.3 - Two 89 64-mm angles are bolted together as shown...Ch. 10.3 - Prob. 85PCh. 10.3 - Prob. 86PCh. 10.3 - Prob. 87PCh. 10.3 - Prob. 88PCh. 10.4 - An eccentric load is applied at a point 22 mm from...Ch. 10.4 - Prob. 90PCh. 10.4 - Prob. 91PCh. 10.4 - Solve Prob. 10.91 using the interaction method and...Ch. 10.4 - A column of 5.5-m effective length is made of the...Ch. 10.4 - Prob. 94PCh. 10.4 - A steel compression member of 9-ft effective...Ch. 10.4 - Prob. 96PCh. 10.4 - Two L4 3 38-in. steel angles are welded together...Ch. 10.4 - Solve Prob. 10.97 using the interaction method...Ch. 10.4 - A rectangular column is made of a grade of sawn...Ch. 10.4 - Prob. 100PCh. 10.4 - Prob. 101PCh. 10.4 - Prob. 102PCh. 10.4 - Prob. 103PCh. 10.4 - Prob. 104PCh. 10.4 - A steel tube of 80-mm outer diameter is to carry a...Ch. 10.4 - Prob. 106PCh. 10.4 - Prob. 107PCh. 10.4 - Prob. 108PCh. 10.4 - Prob. 109PCh. 10.4 - Prob. 110PCh. 10.4 - Prob. 111PCh. 10.4 - Prob. 112PCh. 10.4 - Prob. 113PCh. 10.4 - Prob. 114PCh. 10.4 - Prob. 115PCh. 10.4 - A steel column of 7.2-m effective length is to...Ch. 10 - Determine (a) the critical load for the steel...Ch. 10 - Prob. 118RPCh. 10 - Prob. 119RPCh. 10 - (a) Considering only buckling in the plane of the...Ch. 10 - Member AB consists of a single C130 3 10.4 steel...Ch. 10 - The line of action of the 75-kip axial load is...Ch. 10 - Prob. 123RPCh. 10 - Prob. 124RPCh. 10 - A rectangular column with a 4.4-m effective length...Ch. 10 - Prob. 126RPCh. 10 - Prob. 127RPCh. 10 - Prob. 128RP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Everything About COMBINED LOADING in 10 Minutes! Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=N-PlI900hSg;License: Standard youtube license