Concept explainers
Interpretation:
The major and minor products that are expected to be formed in the given reaction has to be identified.
Concept Introduction:
Three steps are followed for determining the products that will be formed in a
- 1. Function of reagent has to be determined.
- 2. The mechanism has to be determined by analyzing the substrate.
- 3. Relevant regiochemical and stereochemical requirements has to be considered.
Function of Reagent:
When a reagent functions as a nucleophile, substitution reaction takes place and when a reagent functions as a base, elimination reaction takes place. The first step is to determine the reagent to be strong or weak nucleophile and whether it is a strong or weak base. Basicity and nucleophilicity do not always parallel each other.
When comparing the atoms in the same row in periodic table, the basicity and nucleophilicity parallel each other. An example is,
When comparing the atoms in the same column in periodic table, the basicity and nucleophilicity do not parallel each other. An example is,
Basicity measures the charge stability on atom, while nucleophlicity measures how fast a nucleophile attacks. Basicity is a
Nucleophile (Only): This category consists of reagents that act only as strong nucleophiles and not as bases. The reagent from this category involves in substitution reaction and not elimination.
Base (Only): This category consists of reagents that act only as bases and not as nucleophiles. The reagent from this category involves in elimination reaction and not substitution.
Strong Nucleophile/Strong Base: This category consists of reagents that are strong bases and also strong nucleophiles. This includes hydroxide, alkoxide ions. Generally these reagents are used for bimolecular process.
Weak Nucleophile/Weak Base: This category consists of reagents that are weak bases and weak nucleophile. This includes reagents such as water, alcohols. Generally these reagents are used for unimolecular process.
Determining Mechanism:
The mechanism can be identified by looking into the flowchart given below after analyzing the function of reagent.
Relevant regiochemical and stereochemical requirements:
Mechanism | Regiochemical Outcome | Stereochemical Outcome |
Attack of nucleophile takes place in the alpha position in which the leaving group is present | Nucleophile replaces the leaving group with the configuration inversion | |
Nucleophile attacks carbocation. If rearrangement takes place, the carbocation will be different | Replacement of leaving group with racemization occurs | |
E2 | Zaitsev product is favored over Hofmann product. | Process is stereospecific and stereoselective. |
E1 | Always Zaitsev product is favored over Hofmann product. | Process is stereoselective. Trans substituted alkene is favored over cis substituted alkene. |

Want to see the full answer?
Check out a sample textbook solution
Chapter 10 Solutions
ORGANIC CHEMISTRY-NEXTGEN+BOX (1 SEM.)
- Indicate how to prepare a 10% sodium hydroxide (NaOH) solution to a slightly alkaline pH.arrow_forwardCH, CH CH₂ CH₂ Phytyl side chain 5. What is the expected order of elution of compounds A-D below from a chromatography column packed with silica gel, eluting with hexane/ethyl acetate? C D OHarrow_forwardPlease analze my gel electrophoresis column of the VRK1 kinase (MW: 39.71 kDa). Attached is the following image for the order of column wells and my gel.arrow_forward
- 2.0arrow_forwardWrite the electron configuration of an atom of the element highlighted in this outline of the Periodic Table: 1 23 4 5 6 7 He Ne Ar Kr Xe Rn Hint: you do not need to know the name or symbol of the highlighted element! ☐arrow_forwardCompare these chromatograms of three anti-psychotic drugs done by HPLC and SFC. Why is there the difference in separation time for SFC versus HPLC? Hint, use the Van Deemter plot as a guide in answering this question. Why, fundamentally, would you expect a faster separation for SFC than HPLC, in general?arrow_forward
- A certain inorganic cation has an electrophoretic mobility of 5.27 x 10-4 cm2s-1V-1. The same ion has a diffusion coefficient of 9.5 x 10-6cm2s-1. If this ion is separated from cations by CZE with a 75cm capillary, what is the expected plate count, N, at an applied voltage of 15.0kV? Under these separation conditions, the electroosmotic flow rate was 0.85mm s-1 toward the cathode. If the detector was 50.0cm from the injection end of the capillary, how long would it take in minutes for the analyte cation to reach the detector after the field was applied?arrow_forward2.arrow_forwardPlease solve for the following Electrochemistry that occursarrow_forward
- Commercial bleach contains either chlorine or oxygen as an active ingredient. A commercial oxygenated bleach is much safer to handle and less likely to ruin your clothes. It is possible to determine the amount of active ingredient in an oxygenated bleach product by performing a redox titration. The balance reaction for such a titration is: 6H+ +5H2O2 +2MnO4- à 5O2 + 2Mn2+ + 8H2O If you performed the following procedure: “First, dilute the Seventh Generation Non-Chlorine Bleach by pipetting 10 mL of bleach in a 100 mL volumetric flask and filling the flask to the mark with distilled water. Next, pipet 10 mL of the diluted bleach solution into a 250 mL Erlenmeyer flask and add 20 mL of 1.0 M H2SO4 to the flask. This solution should be titrated with 0.0100 M KMnO4 solution.” It took 18.47mL of the KMnO4 to reach the endpoint on average. What was the concentration of H2O2 in the original bleach solution in weight % assuming the density of bleach is 1g/mL?arrow_forward10.arrow_forwardProper care of pH electrodes: Why can you not store a pH electrode in distilled water? What must you instead store it in? Why?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





