
Chemical Principles
8th Edition
ISBN: 9781305581982
Author: Steven S. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 99AE
If you calculate a value for
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
please help me please please
Using reaction free energy to predict equilibrium composition
Consider the following equilibrium:
N2 (g) + 3H2 (g) = 2NH3 (g) AG⁰ = -34. KJ
Now suppose a reaction vessel is filled with 8.06 atm of nitrogen (N2) and 2.58 atm of ammonia (NH3) at 106. °C. Answer the following questions about this
system:
?
rise
Under these conditions, will the pressure of N2 tend to rise or fall?
☐ x10
fall
Is it possible to reverse this tendency by adding H₂?
In other words, if you said the pressure of N2 will tend to rise, can that be
changed to a tendency to fall by adding H₂? Similarly, if you said the
pressure of N2 will tend to fall, can that be changed to a tendency to rise
by adding H₂?
If you said the tendency can be reversed in the second question, calculate
the minimum pressure of H₂ needed to reverse it.
Round your answer to 2 significant digits.
yes
no
☐
atm
☑
5
00.
18
Ar
i need help with the following
Chapter 10 Solutions
Chemical Principles
Ch. 10 - For the process A(l)A(g) , which direction is...Ch. 10 - Prob. 2DQCh. 10 - Prob. 3DQCh. 10 - Prob. 4DQCh. 10 - Prob. 5DQCh. 10 - Prob. 6DQCh. 10 - Predict the sign of S for each of the following...Ch. 10 - Prob. 8DQCh. 10 - Prob. 9DQCh. 10 - At 1 atm, liquid water is heated above 100°C. For...
Ch. 10 - Prob. 11DQCh. 10 - Prob. 12ECh. 10 - Prob. 13ECh. 10 - Prob. 14ECh. 10 - Consider the following energy levels, each capable...Ch. 10 - Prob. 16ECh. 10 - Prob. 17ECh. 10 - Which of the following involve an increase in the...Ch. 10 - Prob. 19ECh. 10 - Choose the substance with the larger positional...Ch. 10 - In the roll of two dice, what total number is the...Ch. 10 - Entropy can be calculated by a relationship...Ch. 10 - Calculate the energy required to change the...Ch. 10 - For nitrogen gas the values of CvandCp at 25°Care...Ch. 10 - Consider a rigid, insulated box containing 0.400...Ch. 10 - One mole of an ideal gas is contained in a...Ch. 10 - One mole of an ideal gas with a volume of 1.0 L...Ch. 10 - A cylinder with an initial volume of 10.0 L is...Ch. 10 - The molar heat capacities for carbon dioxide at...Ch. 10 - The molar entropy of helium gas at 25°C and 1.00...Ch. 10 - Consider the process A(l)A(g)75C155C which is...Ch. 10 - A sample of ice weighing 18.02 g, initially at...Ch. 10 - Calculate the entropy change for a process in...Ch. 10 - Calculate the change in entropy that occurs...Ch. 10 - The synthesis of glucose directly from CO2andH2O...Ch. 10 - A green plant synthesizes glucose by...Ch. 10 - Entropy has been described as “time’s arrow.”...Ch. 10 - For a gas phase reaction, what do you concentrate...Ch. 10 - What determines Ssurr for a process? To calculate...Ch. 10 - Predict the sign of Ssurr for the following...Ch. 10 - Calculate Ssurr for the following reactions at...Ch. 10 - For each of the following pairs of substances,...Ch. 10 - Predict the sign of S for each of the following...Ch. 10 - Prob. 44ECh. 10 - Prob. 45ECh. 10 - For the reaction CS2(g)+3O2(g)CO2(g)+2SO2(g) S is...Ch. 10 - For the reaction C2H2(g)+4F2(g)2CF4(g)+H2(g) S is...Ch. 10 - Ethanethiol ( C2H5SH ; also called ethyl...Ch. 10 - For mercury at 1 atm, the enthalpy of vaporization...Ch. 10 - The enthalpy of vaporization of ethanol is 38.7...Ch. 10 - For ammonia (NH3) the enthalpy of fusion is 5.65...Ch. 10 - It is quite common for a solid to change from one...Ch. 10 - As O2(l) is cooled at 1 atm, it freezes at 54.5 K...Ch. 10 - Prob. 54ECh. 10 - The value of G for the reaction...Ch. 10 - Of the functions H,S,andG , which dependsmost...Ch. 10 - For the reaction at 29° K, 2NO2(g)N2O4(g) the...Ch. 10 - Consider the reaction...Ch. 10 - Consider the reaction 2POCl3(g)2PCl3(g)+O2(g) a....Ch. 10 - Consider two reactions for the production of...Ch. 10 - Prob. 61ECh. 10 - Prob. 62ECh. 10 - When most biological enzymes are heated, they...Ch. 10 - For the reaction 2O(g)O2(g) a. predict the signs...Ch. 10 - Hydrogen cyanide is produced industrially by the...Ch. 10 - A reaction at constant T and P is spontaneous as...Ch. 10 - G predicts spontaneity for a reaction at constant...Ch. 10 - Using thermodynamic data from Appendix 4,...Ch. 10 - Prob. 69ECh. 10 - Using data from Appendix 4, calculate G for...Ch. 10 - Prob. 71ECh. 10 - One of the reactions that destroys ozone in the...Ch. 10 - Hydrogen sulfide can be removed from natural gas...Ch. 10 - Consider the autoionization of water at 25°C:...Ch. 10 - How can one estimate the value of K at...Ch. 10 - The standard free energies of formation and the...Ch. 10 - Consider the reaction...Ch. 10 - Prob. 78ECh. 10 - Consider the following reaction at 800. K:...Ch. 10 - Consider the following reaction at 298 K:...Ch. 10 - For the reaction A(g)+2B(g)C(g) the initial...Ch. 10 - Consider the following diagram of free energy (G)...Ch. 10 - Calculate G for H2O(g)+12O2(g)H2O2(g) at600. K,...Ch. 10 - Cells use the hydrolysis of adenosine...Ch. 10 - Carbon monoxide is toxic because it bonds much...Ch. 10 - One reaction that occurs in human metabolism is...Ch. 10 - At 25.0°C, for the reaction 2NO2(g)N2O4(g) the...Ch. 10 - Consider the relationship ln(K)=HRT+SR The...Ch. 10 - a. Use the equation in Exercise 88 to determine H...Ch. 10 - The equilibrium constant K for the reaction...Ch. 10 - The equilibrium constant for a certain reaction...Ch. 10 - A sample of a monatomic ideal gas at 1.00 atm...Ch. 10 - A sample of 1.75 moles of H2(Cv=20.5JK-1mol-1) at...Ch. 10 - A 1.50-mole sample of an ideal gas is allowed to...Ch. 10 - Consider 1.00 mole of CO2(g) at 300. K and 5.00...Ch. 10 - Prob. 96ECh. 10 - A mixture of hydrogen gas and chlorine gas...Ch. 10 - When the environment is contaminated by a toxic...Ch. 10 - If you calculate a value for G for a reaction...Ch. 10 - Given the following illustration, what can be said...Ch. 10 - Some water is placed in a coffee cup calorimeter....Ch. 10 - Using Appendix 4 and the following data, determine...Ch. 10 - Prob. 103AECh. 10 - Human DNA contains almost twice as much...Ch. 10 - The enthalpy of vaporization of chloroform (CHCl3)...Ch. 10 - Two crystalline forms of white phosphorus are...Ch. 10 - Monochloroethane (C2H5Cl) can be produced by...Ch. 10 - Acrylonitrile is the starting material used in the...Ch. 10 - Prob. 109AECh. 10 - Many biochemical reactions that occur in cells...Ch. 10 - Consider the following reaction at 35°C:...Ch. 10 - Consider the reaction H2(g)+Br2(g)2HBr(g) where...Ch. 10 - At 1500 K the process I2(g)2I(g)10atm10atm is not...Ch. 10 - Using the following data, calculate the value of...Ch. 10 - Sodium chloride is added to water (at 25°C) until...Ch. 10 - Prob. 116AECh. 10 - Prob. 117AECh. 10 - The deciding factor on why HF is a weak acid and...Ch. 10 - Prob. 119AECh. 10 - Calculate the entropy change for the vaporization...Ch. 10 - The standard entropy values (S°) for...Ch. 10 - Calculate the values of S and G for each of the...Ch. 10 - Calculate the changes in free energy, enthalpy,...Ch. 10 - Consider the isothermal expansion of 1.00 mole of...Ch. 10 - A 1.00-mole sample of an ideal gas in a vessel...Ch. 10 - One mole of an ideal gas with a volume of 6.67 L...Ch. 10 - Which of the following reactions (or processes)...Ch. 10 - For rubidium Hvap=69.0kJ/mol at 686°C, its...Ch. 10 - Given the thermodynamic data below, calculate S...Ch. 10 - Consider the reaction: H2S(g)+SO2(g)3S(g)+2H2O(l)...Ch. 10 - The following reaction occurs in pure water:...Ch. 10 - Consider the dissociation of a weak acid HA...Ch. 10 - Consider the reaction: PCl3(g)+Cl2(g)PCl5(g) a....Ch. 10 - The equilibrium constant for a certain reaction...Ch. 10 - Consider a 2.00-mole sample of Ar at 2.00 atm...Ch. 10 - Prob. 136CPCh. 10 - One mole of an ideal gas undergoes an isothermal...Ch. 10 - At least some of what is in the following quoted...Ch. 10 - You have a 1.00-L sample of hot water (90.°C)...Ch. 10 - Consider two perfectly insulated vessels. Vessel 1...Ch. 10 - If wet silver carbonate is dried in a stream of...Ch. 10 - Consider a weak acid HX. If a 0.10 M solution of...Ch. 10 - Using data from Appendix 4, calculate H , G , and...Ch. 10 - One mole of a monatomic ideal gas (for which...Ch. 10 - Consider the system A(g)B(g) a. 25°C. a. Assuming...Ch. 10 - Liquid water at 25°C is introduced into an...Ch. 10 - Consider 1.00 mole of an ideal gas that is...Ch. 10 - Prob. 148CPCh. 10 - Consider the reaction 2CO(g)+O2(g)2CO2(g) a. Using...Ch. 10 - Prob. 150CPCh. 10 - Prob. 151CPCh. 10 - Consider the following Cp values for N2(g) :...Ch. 10 - Benzene (C6H6) has a melting point of 5.5°C and...Ch. 10 - Prob. 154MPCh. 10 - Prob. 155MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Using reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NO(g) +Cl₂ (g) = 2NOC1 (g) AGº = -41. kJ Now suppose a reaction vessel is filled with 8.90 atm of chlorine (C12) and 5.71 atm of nitrosyl chloride (NOC1) at 1075. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of NOCI tend to rise or fall? x10 fall Is it possible to reverse this tendency by adding NO? In other words, if you said the pressure of NOCI will tend to rise, can that be changed to a tendency to fall by adding NO? Similarly, if you said the pressure of NOCI will tend to fall, can that be changed to a tendency to rise by adding NO? yes no If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO needed to reverse it. Round your answer to 2 significant digits. atm ☑ 18 Ararrow_forwardIdentifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that HCN is a weak acid. acids: 0.29 mol of NaOH is added to 1.0 L of a 1.2M HCN solution. bases: ☑ other: 0.09 mol of HCl is added to acids: 1.0 L of a solution that is bases: 0.3M in both HCN and KCN. other: 0,0,... ? 00. 18 Ar 日arrow_forwardIdentifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that HF is a weak acid. acids: 0.2 mol of KOH is added to 1.0 L of a 0.5 M HF solution. bases: Х other: ☐ acids: 0.10 mol of HI is added to 1.0 L of a solution that is 1.4M in both HF and NaF. bases: other: ☐ 0,0,... ด ? 18 Ararrow_forward
- Identifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that NH3 is a weak base. acids: ☐ 1.8 mol of HCl is added to 1.0 L of a 1.0M NH3 bases: ☐ solution. other: ☐ 0.18 mol of HNO3 is added to 1.0 L of a solution that is 1.4M in both NH3 and NH₁Br. acids: bases: ☐ other: ☐ 0,0,... ? 000 18 Ar B 1arrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NH3 (g) = N2 (g) +3H₂ —N2 (g) AGº = 34. kJ Now suppose a reaction vessel is filled with 4.19 atm of ammonia (NH3) and 9.94 atm of nitrogen (N2) at 378. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of NH 3 tend to rise or fall? ☐ x10 fall Х Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of NH 3 will tend to rise, can that be changed to a tendency to fall by adding H₂? Similarly, if you said the pressure of NH3 will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. yes no atm 00. 18 Ar 무ㅎ ?arrow_forwardIdentifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that HF is a weak acid. 2.2 mol of NaOH is added to 1.0 L of a 1.4M HF solution. acids: П bases: Х other: ☐ ப acids: 0.51 mol of KOH is added to 1.0 L of a solution that is bases: 1.3M in both HF and NaF. other: ☐ 00. 18 Ararrow_forward
- Using reaction free energy to predict equilibrium composition Consider the following equilibrium: N2O4 (g) 2NO2 (g) AG⁰ = 5.4 kJ Now suppose a reaction vessel is filled with 1.68 atm of dinitrogen tetroxide (N204) at 148. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of N2O4 tend to rise or fall? x10 fall Is it possible to reverse this tendency by adding NO2? In other words, if you said the pressure of N2O4 will tend to rise, can that be changed to a tendency to fall by adding NO2? Similarly, if you said the pressure of N2O4 will tend to fall, can that be changed to a tendency to rise by adding NO2? If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO 2 needed to reverse it. Round your answer to 2 significant digits. yes no 0.42 atm ☑ 5 0/5 ? مله Ararrow_forwardHomework 13 (Ch17) Question 4 of 4 (1 point) | Question Attempt: 2 of 2 ✓ 1 ✓ 2 = 3 4 Time Remaining: 4:25:54 Using the thermodynamic information in the ALEKS Data tab, calculate the standard reaction free energy of the following chemical reaction: 2CH3OH (g)+302 (g) → 2CO2 (g) + 4H₂O (g) Round your answer to zero decimal places. ☐ kJ x10 ☐ Subm Check 2020 Hill LLC. All Rights Reserved. Terms of Use | Privacy Cearrow_forwardIdentifying the major species in weak acid or weak base equilibria Your answer is incorrect. • Row 2: Your answer is incorrect. • Row 3: Your answer is incorrect. • Row 6: Your answer is incorrect. 0/5 The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that HF is a weak acid. acids: HF 0.1 mol of NaOH is added to 1.0 L of a 0.7M HF solution. bases: 0.13 mol of HCl is added to 1.0 L of a solution that is 1.0M in both HF and KF. Exponent other: F acids: HF bases: F other: K 1 0,0,... ? 000 18 Ararrow_forward
- Using reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NOCI (g) 2NO (g) + Cl2 (g) AGº =41. kJ Now suppose a reaction vessel is filled with 4.50 atm of nitrosyl chloride (NOCI) and 6.38 atm of chlorine (C12) at 212. °C. Answer the following questions about this system: ? rise Under these conditions, will the pressure of NOCI tend to rise or fall? x10 fall Is it possible to reverse this tendency by adding NO? In other words, if you said the pressure of NOCI will tend to rise, can that be changed to a tendency to fall by adding NO? Similarly, if you said the pressure of NOCI will tend to fall, can that be changed to a tendency to rise by adding NO? yes no If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO needed to reverse it. Round your answer to 2 significant digits. 0.035 atm ✓ G 00. 18 Ararrow_forwardHighlight each glycosidic bond in the molecule below. Then answer the questions in the table under the drawing area. HO- HO- -0 OH OH HO NG HO- HO- OH OH OH OH NG OHarrow_forward€ + Suppose the molecule in the drawing area below were reacted with H₂ over a platinum catalyst. Edit the molecule to show what would happen to it. That is, turn it into the product of the reaction. Also, write the name of the product molecule under the drawing area. Name: ☐ H C=0 X H- OH HO- H HO- -H CH₂OH ×arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning

Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning

General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning

Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY