Materials containing the elements Y, Ba, Cu, and O that are superconductors (electrical resistance equals zero) at temperatures above that of liquid nitrogen were recently discovered. The structures of these materials are based on the perovskite structure. Were they to have the ideal perovskite structure, the superconductor would have the structure shown in pant (a) of the following figure. a. What is the formula of this ideal perovskite material? b. How is this structure related to the perovskite structure shown in Exercise 85? These materials, however, do not act as superconductors unless they are deficient in oxygen. The structure of the actual superconducting phase appears to be that shown in pan (b) of the figure. c. What is the formula of this material?
Materials containing the elements Y, Ba, Cu, and O that are superconductors (electrical resistance equals zero) at temperatures above that of liquid nitrogen were recently discovered. The structures of these materials are based on the perovskite structure. Were they to have the ideal perovskite structure, the superconductor would have the structure shown in pant (a) of the following figure. a. What is the formula of this ideal perovskite material? b. How is this structure related to the perovskite structure shown in Exercise 85? These materials, however, do not act as superconductors unless they are deficient in oxygen. The structure of the actual superconducting phase appears to be that shown in pan (b) of the figure. c. What is the formula of this material?
Solution Summary: The author explains how the formula of given superconductor and ideal perovskite is determined, and the two major types of close packing of the atoms/ions in a crystal structure are – hexagonal close
Materials containing the elements Y, Ba, Cu, and O that are superconductors (electrical resistance equals zero) at temperatures above that of liquid nitrogen were recently discovered. The structures of these materials are based on the perovskite structure. Were they to have the ideal perovskite structure, the superconductor would have the structure shown in pant (a) of the following figure.
a. What is the formula of this ideal perovskite material?
b. How is this structure related to the perovskite structure shown in Exercise 85?
These materials, however, do not act as superconductors unless they are deficient in oxygen. The structure of the actual superconducting phase appears to be that shown in pan (b) of the figure.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Unit Cell Chemistry Simple Cubic, Body Centered Cubic, Face Centered Cubic Crystal Lattice Structu; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=HCWwRh5CXYU;License: Standard YouTube License, CC-BY