A wad of sticky clay with mass m and velocity v → i is fired at a solid cylinder of mass M and radius R (Fig. P10.75). The cylinder is initially at rest and is mounted on a fixed horizontal axle that runs through its center of mass. The line of motion of the projectile is perpendicular to the axle and at a distance d < R from the center. (a) Find the angular speed of the system just after the clay strikes and sticks to the surface of the cylinder. (b) Is the mechanical energy of the clay–cylinder system constant in this process? Explain your answer. (c) Is the momentum of the clay–cylinder system constant in this process? Explain your answer. Figure P10.75
A wad of sticky clay with mass m and velocity v → i is fired at a solid cylinder of mass M and radius R (Fig. P10.75). The cylinder is initially at rest and is mounted on a fixed horizontal axle that runs through its center of mass. The line of motion of the projectile is perpendicular to the axle and at a distance d < R from the center. (a) Find the angular speed of the system just after the clay strikes and sticks to the surface of the cylinder. (b) Is the mechanical energy of the clay–cylinder system constant in this process? Explain your answer. (c) Is the momentum of the clay–cylinder system constant in this process? Explain your answer. Figure P10.75
Solution Summary: The author explains the angular speed of the system after the clay sticks to a cylinder.
A wad of sticky clay with mass m and velocity
v
→
i
is fired at a solid cylinder of mass M and radius R (Fig. P10.75). The cylinder is initially at rest and is mounted on a fixed horizontal axle that runs through its center of mass. The line of motion of the projectile is perpendicular to the axle and at a distance d < R from the center. (a) Find the angular speed of the system just after the clay strikes and sticks to the surface of the cylinder. (b) Is the mechanical energy of the clay–cylinder system constant in this process? Explain your answer. (c) Is the momentum of the clay–cylinder system constant in this process? Explain your answer.
Please don't use Chatgpt will upvote and give handwritten solution
No chatgpt pls will upvote Already got wrong chatgpt answer
An electron and a proton are each accelerated through a potential difference of 21.0 million volts. Find the momentum (in MeV/c)
and the kinetic energy (in MeV) of each, and compare with the results of using the classical formulas.
Momentum (MeV/c)
relativistic
classical
electron
proton
Kinetic Energy (MeV)
Chapter 10 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.