Concept explainers
A uniform beam resting on two pivots has a length L = 6.00 m and mass M = 90.0 kg. The pivot under the left end exerts a normal force n1 on the beam, and the second pivot located a distance ℓ = 4.00 m from the left end exerts a normal force n2. A woman of mass m = 55.0 kg steps onto the left end of the beam and begins walking to the right as in Figure P10.28. The goal is to find the woman’s position when the beam begins to tip. (a) What is the appropriate analysis model for the beam before it begins to tip? (b) Sketch a force diagram for the beam, labeling the gravitational and normal forces acting on the beam and placing the woman a distance x to the right of the first pivot, which is the origin. (c) Where is the woman when the normal force n1 is the greatest? (d) What is n1 when the beam is about to tip? (e) Use Equation 10.27 to find the value of n2 when the beam is about to tip. (f) Using the result of part (d) and Equation 10.28, with torques computed around the second pivot, find the woman’s position x when the beam is about to tip. (g) Check the answer to part (e) by computing torques around the first pivot point.
Figure P10.28
(a)
The model of beam used for analysis before it begins to tip.
Answer to Problem 28P
The object is in static equilibrium before it begins to tip.
Explanation of Solution
Initially the beam is balanced. When an object is at rest the equilibrium maintained by the object is called static equilibrium.
Hence the object is in static equilibrium before it begins to tip.
Conclusion:
Therefore, the object is in static equilibrium before it begins to tip.
(b)
Sketch the force diagram for the beam.
Answer to Problem 28P
The force diagram of the beam is given below.
Explanation of Solution
Force diagram represents all the different kinds of forces acting on the given system. Weight of the women,
Conclusion:
The weight of the women is.
Here,
The weight of the beam corresponding to center of mass is.
Substitute,
Substitute,
The force diagram of the beam is given below.
(c)
The position of the women when the normal force is greatest.
Answer to Problem 28P
When the women is at
Explanation of Solution
The normal force
The normal force
Conclusion:
Therefore, the normal force
(d)
The value of
Answer to Problem 28P
The value of
Explanation of Solution
When the women walk from left end to right end she will reach at a point so that the beam start to rotate in clockwise direction about the right pivot. So the beam starts to lift up about the leftmost pivot, thus the normal force exerted by the pivot will be zero.
Thus the normal force
Conclusion:
Therefore, the value of
(e)
The value of
Answer to Problem 28P
The value of
Explanation of Solution
Write the expression for the total force acting on
Since the force exerted on beam, and normal force
Rearrange equation (IV) to obtain an expression for
Conclusion:
Substitute,
Therefore, value of
(f)
The position of women when the beam is about to tip.
Answer to Problem 28P
The position of women when the beam is about to tip is
Explanation of Solution
Write the expression for total torque in the beam.
When the beam is about to the tip, the torque
Substitute,
Conclusion:
Substitute,
Therefore, the position of women when the beam is about to tip is
(g)
To check the answer in part (f) computing the torque around the first pivot point.
Answer to Problem 28P
The position of the women is
Explanation of Solution
Write the expression for the net torque about the left pivot.
Conclusion:
The net torque about the left pivot is zero.
Substitute,
The position obtained in part (f) is
Therefore, the position of the women is
Want to see more full solutions like this?
Chapter 10 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- A beam resting on two pivots has a length of L = 6.00 m and mass M = 94.0 kg. The pivot under the left end exerts a normal force n1 on the beam, and the second pivot placed a distance ℓ = 4.00 m from the left end exerts a normal force n2. A woman of mass m = 51.5 kg steps onto the left end of the beam and begins walking to the right as in the figure below. The goal is to find the woman's position when the beam begins to tip. (a)Where is the woman when the normal force n1 is the greatest? x = _____m(b) What is n1 when the beam is about to tip?____N(c) Use the force equation of equilibrium to find the value of n2 when the beam is about to tip.____Narrow_forwardA beam resting on two pivots has a length of L = 6.00 m and mass M = 77.0 kg. The pivot under the left end exerts a normal force n1 on the beam, and the second pivot placed a distance ℓ = 4.00 m from the left end exerts a normal force n2. A woman of mass m = 61.5 kg steps onto the left end of the beam and begins walking to the right as in the figure below. The goal is to find the woman's position when the beam begins to tip. (a) Sketch a free-body diagram, labeling the gravitational and normal forces acting on the beam and placing the woman x meters to the right of the first pivot, which is the origin. (b) Where is the woman when the normal force n1 is the greatest?x = (c) What is n1 when the beam is about to tip? (d) Use the force equation of equilibrium to find the value of n2 when the beam is about to tip. (e) Using the result of part (c) and the torque equilibrium equation, with torques computed around the second pivot point, find the woman's position when the beam is about to…arrow_forwardA beam resting on two pivots has a length of L = 6.00 m and mass M = 77.0 kg. The pivot under the left end exerts a normal force n1 on the beam, and the second pivot placed a distance ℓ = 4.00 m from the left end exerts a normal force n2. A woman of mass m = 61.5 kg steps onto the left end of the beam and begins walking to the right as in the figure below. The goal is to find the woman's position when the beam begins to tip. (b) Where is the woman when the normal force n1 is the greatest?x = (c) What is n1 when the beam is about to tip? (d) Use the force equation of equilibrium to find the value of n2 when the beam is about to tip. (e) Using the result of part (c) and the torque equilibrium equation, with torques computed around the second pivot point, find the woman's position when the beam is about to tip.x = (f) Check the answer to part (e) by computing torques around the first pivot point.x = (g)Except for possible slight differences due to rounding, is the answer the same for F…arrow_forward
- A beam resting on two pivots has a length of L = 6.00 m and mass M = 88.0 kg. The pivot under the left end exerts a normal force n1 on the beam, and the second pivot placed a distance ℓ = 4.00 m from the left end exerts a normal force n2. A woman of mass m = 61.0 kg steps onto the left end of the beam and begins walking to the right as in the figure below. The goal is to find the woman's position when the beam begins to tip. Where is the woman when the normal force n1 is the greatest? X=0 c. (c) What is n1 when the beam is about to tip? 0 (d) Use the force equation of equilibrium to find the value of n2 when the beam is about to tip. (e) Using the result of part (c) and the torque equilibrium equation, with torques computed around the second pivot point, find the woman's position when the beam is about to tip (f) Check the answer to part (e) by computing torques around the first pivot point x =arrow_forwardA beam resting on two pivots has a length of L = 6.00 m and mass M = 77.0 kg. The pivot under the left end exerts a normal force n₁ on the beam, and the second pivot placed a distance = 4.00 m from the left end exerts a normal force n₂. A woman of mass m = 61.0 kg steps onto the left end of the beam and begins walking to the right as in the figure below. The goal is to find the woman's position when the beam begins to tip. m L M (a) Sketch a free-body diagram, labeling the gravitational and normal forces acting on the beam and placing the woman x meters to the right of the first pivot, which is the origin. (Submit a file with a maximum size of 1 MB.) Choose File No file chosen This answer has not been graded yet. (b) Where is the woman when the normal force ₁ is the greatest? X = m (c) What is n₁ when the beam is about to tip? N (d) Use the force equation of equilibrium to find the value of n₂ when the beam is about to tip. N (e) Using the result of part (c) and the torque equilibrium…arrow_forwardA beam resting on two pivots has a length of L = 6.00 m and mass M = 91.0 kg.The pivot under the left end exerts a normal force n1 on the beam, and the second pivot placed a distance ℓ = 4.00 m from the left end exerts a normal force n2. A woman of mass m = 62.0 kg steps onto the left end of the beam and begins walking to the right as in the figure below. The goal is to find the woman's position when the beam begins to tip. (b) Where is the woman when the normal force n1 is the greatest?x = m(c) What is n1 when the beam is about to tip? N(d) Use the force equation of equilibrium to find the value of n2 when the beam is about to tip. N(e) Using the result of part (c) and the torque equilibrium equation, with torques computed around the second pivot point, find the woman's position when the beam is about to tip.x = m(f) Check the answer to part (e) by computing torques around the first pivot point.x = marrow_forward
- A beam resting on two pivots has a length of L = 6.00 m and mass M = 89.0 kg.The pivot under the left end exerts a normal force n1 on the beam, and the second pivot placed a distance ℓ = 4.00 m from the left end exerts a normal force n2. A woman of mass m = 52.5 kg steps onto the left end of the beam and begins walking to the right as in the figure below. The goal is to find the woman's position when the beam begins to tip. A woman of mass m walking across a beam which is resting on two pivots. The beam is of length L and mass M and the woman is a distance x from the left end of the beam. The first pivot is directly under the left end of the beam and the second pivot is a distance ℓ from the first pivot at a shorter distance than the length of the beam. (a) Sketch a free-body diagram, labeling the gravitational and normal forces acting on the beam and placing the woman x meters to the right of the first pivot, which is the origin. (b) Where is the woman when the normal…arrow_forwardA beam resting on two pivots has a length of L = 6.00 m and mass M = 89.0 kg.The pivot under the left end exerts a normal force n1 on the beam, and the second pivot placed a distance ℓ = 4.00 m from the left end exerts a normal force n2. A woman of mass m = 52.5 kg steps onto the left end of the beam and begins walking to the right as in the figure below. The goal is to find the woman's position when the beam begins to tip. (a) Use the force equation of equilibrium to find the value of n2 when the beam is about to tip. N(b) Using the result of part (c) and the torque equilibrium equation, with torques computed around the second pivot point, find the woman's position when the beam is about to tip.x = m(c) Check the answer to part (e) by computing torques around the first pivot point.x = m(d) Except for possible slight differences due to rounding, is the answer the same?arrow_forwardA beam resting on two pivots has a length of L = 6.00 m and mass M = 89.0 kg. The pivot under the left end exerts a normal force n1 on the beam, and the second pivot placed a distance ℓ = 4.00 m from the left end exerts a normal force n2. A woman of mass m = 52.5 kg steps onto the left end of the beam and begins walking to the right as in the figure below. The goal is to find the woman's position when the beam begins to tip. A woman of mass m walking across a beam which is resting on two pivots. The beam is of length L and mass M and the woman is a distance x from the left end of the beam. The first pivot is directly under the left end of the beam and the second pivot is a distance ℓ from the first pivot at a shorter distance than the length of the beam. (a) Sketch a free-body diagram, labeling the gravitational and normal forces acting on the beam and placing the woman x meters to the right of the first pivot, which is the origin. (Submit a file with a maximum size of 1…arrow_forward
- A beam resting on two pivots has a length of L = 6.00 m and mass M = 87.0 kg. The pivot under the left end exerts a normal force n₁ on the beam, and the second pivot placed a distance = 4.00 m from the left end exerts a normal force n₂. A woman of mass m = 52.0 kg steps onto the left end of the beam and begins walking to the right as in the figure below. The goal is to find the woman's position when the beam begins to tip. -L- m M (a) Sketch a free-body diagram, labeling the gravitational and normal forces acting on the beam and placing the woman x meters to the right of the first pivot, which is the origin. (Submit a file with a maximum size of 1 MB.) Choose File No file chosen (b) Where is the woman when the normal force n₁ is the greatest? x = L m (c) What is n, when the beam is about to tip? N (d) Use the force equation of equilibrium to find the value of n₂ when the beam is about to tip. N (e) Using the result of part (c) and the torque equilibrium equation, with torques computed…arrow_forwardA beam resting on two pivots has a length of L = 6.00 m and mass M = 92.0 kg.The pivot under the left end exerts a normal force n1on the beam, and the second pivot placed a distance ℓ = 4.00 m from the left end exerts a normal force n2. A woman of mass m = 62.5 kg steps onto the left end of the beam and begins walking to the right as in the figure below. The goal is to find the woman's position when the beam begins to tip. (a) Where is the woman when the normal force n1 is the greatest? x = ____m(b) What is n1 when the beam is about to tip?____ N (c) Use the force equation of equilibrium to find the value of n2 when the beam is about to tip.____ Narrow_forwardA uniform beam resting on two pivots has a length L = 6.00 m and mass M = 90.0 kg. The pivot under the left end exerts a normal force η1 on the beam, and the second pivot located a distance ℓ = 4.00 m from the left end exerts a normal force η2. A woman of mass m = 55.0 kg steps onto the left end of the beam and begins walking to the right as shown. The goal is to find the woman’s position when the beam begins to tip. (a) What is the appropriate analysis model for the beam before it begins to tip? (b) Sketch a force diagram for the beam, labeling the gravitational and normal forcesacting on the beam and placing the woman a distance x to the right of the first pivot, which is the origin. (c) Where is the woman when the normal force η1 is the greatest? (d) What is η1 when the beam is about to tip? (e) Use as shown to find the value of η2 when the beam is about to tip.(f) Using the result of part (d) and as shown, with torques computed around the second pivot, find the woman’s position x…arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning