A ballistic pendulum is used to measure the speed of bullets. It comprises a heavy block of wood of mass M suspended by two long cords. A bullet of mass m is fired into the block horizontally. The block, with the bullet embedded in it, swings upward (Fig. P10.70). The center of mass of the combination rises through a vertical distance h before coming to rest momentarily. In a particular experiment, a bullet of mass 40.0 g is fired into a wooden block of mass 10.0 kg. The block–bullet combination is observed to rise to a maximum height of 20.0 cm above the block’s initial height. a. What is the initial speed of the bullet? b. What is the fraction of initial kinetic energy lost after the bullet is embedded in the block?
FIGURE P10.70
(a)
The initial speed of the bullet.
Answer to Problem 70PQ
The initial speed of the bullet is
Explanation of Solution
Write the expression of the conservation of linear momentum before and after collision.
Here,
Rearrange above equation to get
According to conservation of mechanical energy, kinetic energy of the bullet-block system immediately after collision is equal to gravitational potential energy of the bullet-block system at maximum displacement.
Write the mathematical expression for conservation of energy.
Here,
Write the expression for
Write the expression for
Here,
Put equations (III) and (IV) in equation (II) and rearrange it to get
Substitute
Conclusion:
Substitute
Therefore, the initial speed of the bullet is
(b)
The fraction of initial kinetic energy lost after the bullet is embedded in the block.
Answer to Problem 70PQ
The initial kinetic energy of the bullet is lost by
Explanation of Solution
The collision of bullet with block results in loss of some initial kinetic energy so that final kinetic energy after impact might be less than initial kinetic energy.
Initial kinetic energy of the system is equal to kinetic energy of the bullet before collision.
Write the expression for the initial kinetic energy.
Lose of kinetic energy is equal to difference between the final kinetic energy after the impact and initial kinetic energy of the bullet.
Final kinetic energy after the impact is equal to final potential energy of the block-bullet system at maximum displacement position.
Write the expression for the final kinetic energy.
Substitute
Write the expression for the percentage change in kinetic energy.
Conclusion:
Substitute
Substitute
Substitute
Therefore, the initial kinetic energy of the bullet is lost by
Want to see more full solutions like this?
Chapter 10 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- No chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forward
- a cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forward
- 2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forwardFrom number 2 and 3 I just want to show all problems step by step please do not short cut look for formulaarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning