Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 82PQ
To determine
The speed of the penguin in terms of the speed of the train
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The potential energy of an interaction is given by U(x)=ax², where a = +6.4 J/m². Initial speed of a 0.79-kg object in this system is 2.63 m/s at x = 0.
A.
How far does the object travel before it reaches a speed of v = 0?
Express your answer with the appropriate units.
B.
Does your answer in the previous part depend on whether the object is traveling in the positive or negative direction?
Yes, the answer in the previous part is for the object traveling in the negative x� direction, the distance for the object traveling in the positive x� direction is greater than the obtained result.
Yes, the answer in the previous part is for the object traveling in the positive x� direction, the distance for the object traveling in the negative x� direction is greater than the obtained result.
No, it does not depend on whether the object is traveling in the positive or negative x� direction.
A 2.3 kg box, starting from rest, is pushed up a ramp by a 10 N force parallel to the ramp. The ramp is 2.0 m long and tilted at 17°. The speed of the box at the top of the ramp is 0.80 m/s. Consider the system to be the box + ramp + earth.a. How much work W does the force do on the system?b. What is the change ΔK in the kinetic energy of the system?c. What is the change ΔUg in the gravitational potential energy of the system?d. What is the change ΔEth in the thermal energy of the system?
d
Problem 5. dt
Given the following energy expression, calculate the equation of motion for the system:
dx dx
-S₁
b-
1₂)
1
2
DIL
1
mi²+=kx² = 5₁²
2
Q Search
Fida
2
dt
dt
99+
-dt
dt dt
PrtScn
58
Home
E
Chapter 10 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 10.1 - What Do You Already Know About Rockets? Think...Ch. 10.3 - Prob. 10.2CECh. 10.3 - Prob. 10.3CECh. 10.3 - Prob. 10.4CECh. 10.5 - What is the purpose of the ropes attached to the...Ch. 10 - Prob. 1PQCh. 10 - Prob. 2PQCh. 10 - Prob. 3PQCh. 10 - A mother pushes her son in a stroller at a...Ch. 10 - Prob. 5PQ
Ch. 10 - Estimate the magnitude of the momentum of a car on...Ch. 10 - Prob. 7PQCh. 10 - Prob. 8PQCh. 10 - What is the magnitude of the Earths momentum...Ch. 10 - The velocity of a 10-kg object is given by...Ch. 10 - A particle has a momentum of magnitude 40.0 kg ...Ch. 10 - Prob. 12PQCh. 10 - Latoya, sitting on a sled, is being pushed by...Ch. 10 - A baseball is thrown vertically upward. The mass...Ch. 10 - Center of Mass Revisited N Find the center of mass...Ch. 10 - Prob. 16PQCh. 10 - Prob. 17PQCh. 10 - Two metersticks are connected at their ends as...Ch. 10 - A boy of mass 25.0 kg is sitting on one side of a...Ch. 10 - Prob. 20PQCh. 10 - Prob. 21PQCh. 10 - Prob. 22PQCh. 10 - Prob. 23PQCh. 10 - Prob. 24PQCh. 10 - Prob. 25PQCh. 10 - A person of mass m stands on a rope ladder that is...Ch. 10 - Prob. 27PQCh. 10 - Prob. 28PQCh. 10 - Two particles with masses 2.0 kg and 4.0 kg are...Ch. 10 - A billiard player sends the cue ball toward a...Ch. 10 - A crate of mass M is initially at rest on a...Ch. 10 - Prob. 32PQCh. 10 - Prob. 33PQCh. 10 - According to the National Academy of Sciences, the...Ch. 10 - Prob. 35PQCh. 10 - Prob. 36PQCh. 10 - Prob. 37PQCh. 10 - Usually, we do not walk or even stand on a...Ch. 10 - Prob. 39PQCh. 10 - There is a compressed spring between two...Ch. 10 - There is a compressed spring between two...Ch. 10 - A submarine with a mass of 6.26 106 kg contains a...Ch. 10 - A 44.0-kg child finds himself trapped on the...Ch. 10 - Problems 44 and 45 are paired. C A model rocket is...Ch. 10 - A model rocket is shot straight up and explodes at...Ch. 10 - An astronaut finds herself in a predicament in...Ch. 10 - Prob. 47PQCh. 10 - Prob. 48PQCh. 10 - Prob. 49PQCh. 10 - Prob. 50PQCh. 10 - The space shuttle uses its thrusters with an...Ch. 10 - Prob. 52PQCh. 10 - Prob. 53PQCh. 10 - Prob. 54PQCh. 10 - Prob. 55PQCh. 10 - The cryogenic main stage of a rocket has an...Ch. 10 - To lift off from the Moon, a 9.50 105 kg rocket...Ch. 10 - Prob. 58PQCh. 10 - Prob. 59PQCh. 10 - Prob. 60PQCh. 10 - Prob. 61PQCh. 10 - An astronaut out on a spacewalk to construct a new...Ch. 10 - Prob. 63PQCh. 10 - Prob. 64PQCh. 10 - A racquetball of mass m = 43.0 g, initially moving...Ch. 10 - Prob. 66PQCh. 10 - Prob. 67PQCh. 10 - Prob. 68PQCh. 10 - A comet is traveling through space with speed 3.33...Ch. 10 - A ballistic pendulum is used to measure the speed...Ch. 10 - Prob. 71PQCh. 10 - Prob. 72PQCh. 10 - Prob. 73PQCh. 10 - Figure P10.74 provides artists with human...Ch. 10 - Prob. 75PQCh. 10 - A single-stage rocket of mass 308 metric tons (not...Ch. 10 - Prob. 77PQCh. 10 - A light spring is attached to a block of mass 4m...Ch. 10 - Prob. 79PQCh. 10 - Prob. 80PQCh. 10 - A Show that the total momentum of a system of...Ch. 10 - Prob. 82PQCh. 10 - Prob. 83PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- On a movie set, an alien spacecraft is to be lifted to a height of 30.0 m for use in a scene. The 200.0-kg spacecraft is attached by ropes to a massless pulley on a crane, and four members of the films construction crew lift the prop at constant speed by delivering 185 W of power each. If 20.0% of the mechanical energy delivered to the pulley is lost to friction, what is the time interval required to lift the spacecraft to the specified height?arrow_forwardA light spring is attached to a block of mass 4m at rest on a frictionless, horizontal table. A second block of mass m is now placed on the table, in contact with the free end of the spring, and the two blocks are pushed together (Fig. P10.78). When the blocks are released, the more massive block moves to the left at 2.50 m/s. a. What is the speed of the less massive block? b. If m = 1.00 kg, what is the elastic potential energy of the system before it is released from rest? FIGURE P10.78arrow_forwardAt the start of a basketball game, a referee tosses a basketball straight into the air by giving it some initial speed. After being given that speed, the ball reaches a maximum height ymax above where it started. Using conservation of energy, find expressions for a. the balls initial speed in terms of the gravitational acceleration g and the maximum height ymax and b. the height of the ball when it has speed v in terms of its current height y, the gravitational acceleration g, and the maximum height ymax.arrow_forward
- Estimate the kinetic energy of the following: a. An ant walking across the kitchen floor b. A baseball thrown by a professional pitcher c. A car on the highway d. A large truck on the highwayarrow_forwardA block is hung from a vertical spring. The spring stretches (h = 0.0650 m) as shown for a particular instant in time in Figure P8.26. Consider the Earth, spring, and block to be in the system. If m = 0.865 kg and k = 125 N/m, find the change in the systems potential energy between the two times depicted in the figure. FIGURE P8.26arrow_forwardIn three cases, a force acts on a particle, and the particle is displaced from an initial position to a final position. Figure 9.11 (page 255) shows the position-versus-force graphs, indicating the initial and final positions of the particle in each case. Find the work done by the force on the particle and sketch the force and displacement vectors along with the appropriate axis in each case.arrow_forward
- February 3, 2009, was a very snowy day along Interstate 69 just outside of Indianapolis, Indiana. As a result of the slippery conditions and low visibility (50 yards or less), there was an enormous accident involving approximately 30 vehicles, including cars, tractor-trailers, and even a fire truck. Many witnesses said that people were driving too fast for the conditions and were too close together. In this problem, we explore two rules of thumb for driving in such conditions. The first is to drive at a speed that is half of what it would be in ideal conditions. The other is the 8-second rule: Watch the vehicle in front of you as it passes some object such as a street sign, and you should pass that same object 8 seconds later. On a dry road, the 8-second rule is replaced by a 3-second rule. a. Assume vehicles on a slippery interstate highway follow both rules. What is the distance between the vehicles? b. If a driver followed the first rule of thumb, driving at a lower speed, but used the 3-second rule instead of the 8-second rule, what is the distance between the vehicles? How does that distance compare with the visibility on the day of the accident? c. Suppose drivers do not follow either rule of thumb for slippery conditions. What is the distance between vehicles? How does that distance compare with the visibility on that day? d. Suppose a driver was not obeying either rule of thumb when she sees a tractor-trailer that stopped on the highway. She presses on her brakes, locking the wheels, and her car crashes into the truck. Estimate the magnitude of the impulse exerted on her car. e. Estimate the impulse on the car in part (d) had the driver followed both rules of thumb for slippery conditions instead of ignoring them.arrow_forward(a) What is the change in energy of a 1000-kg payload taken from rest at the surface of Earth and placed at rest on the surface of the Moon? (b) What would be the answer if the payload were taken from the Moon’s surface to Earth? Is this a reasonable calculation of the energy needed to move a payload back and forth?arrow_forwardA helicopter rescues a trapped person of mass m = 65.0 kg from a flooded river by lifting the person vertically upward using a winch and rope. The person is pulled 12.0 m into the helicopter with a constant force that is 15% greater than the persons weight. a. Find the work done by each of the forces acting on the person. b. Assuming the survivor starts from rest, determine his speed upon reaching the helicopter.arrow_forward
- A puck of mass 0.170 kg slides across ice in the positive x-direction with a kinetic friction coefficient between the ice and puck of 0.150. If the puck is moving at an initial speed of 12.0 m/s, (a) what is the force of kinetic friction? (b) What is the acceleration of the puck? (c) How long does it take for the puck to come to rest? (d) What distance does the puck travel during that time? (e) What total work does friction do on the puck? (f) What average power does friction generate in the puck during that time? (g) What instantaneous power does friction generate in the puck when the velocity is 6.00 m/s? (See Sections 2.5, 4.6, 5.1, and 5.6.)arrow_forwardStarting at rest, Tina slides down a frictionless waterslide with a horizontal section at the bottom that is 4.00 ft above the surface of the swimming pool and strikes the water a distance of 15.0 ft away from the end of the slide. Using conservation of energy, what is Tinas initial height on the waterslide?arrow_forwardA side view of a half-pipe at a skateboard park is shown in Figure P8.51. Sketch a graph of the gravitational potential energy of the skateboarderEarth system as a function of position for a skateboarder who travels from the left side of the half-pipe to the right side. Let the leftmost point be where x = 0 and the lowest point in the half-pipe be where U = 0. FIGURE P8.51arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning