
Concept explainers
(a)
The distance
(a)

Answer to Problem 68AP
The distance
Explanation of Solution
Given information: The mass of car is
From the law of energy conservation,
Here,
Formula to calculate the total initial energy of the system is,
Here,
Write the expression for the initial translational kinetic energy of the elevator is,
Here,
Write the expression for the initial translational kinetic energy of the counterweight is,
Here,
Write the expression for the initial rotational kinetic energy of the sheave is,
Here,
Write the expression for the moment of inertia of the pulley is,
Here,
Write the expression for the initial angular speed of the pulley is,
Here,
Substitute
Substitute
Since at the end the system comes to rest hence all the kinetic energies will be zero only potential energy remains in the system.
Formula to calculate the total final energy of the system is,
Here,
Write the expression for the final potential energy of the elevator is,
Here,
Write the expression for the final potential energy of the counterweight is,
Here,
Since the sheave pulley remains at its position so its final potential energy is zero.
Substitute
Substitute
Formula to calculate the mass of the elevator is,
Here,
Substitute
Substitute
Conclusion:
Therefore, the distance
(b)
The distance
(b)

Answer to Problem 68AP
The distance
Explanation of Solution
Given information: The mass of car is
The expression for the distance
Substitute
Conclusion:
Therefore, the distance
(c)
The distance
(c)

Answer to Problem 68AP
The distance
Explanation of Solution
Given information: The mass of car is
The expression for the distance
Substitute
Conclusion:
Therefore, the distance
(d)
The distance
(d)

Answer to Problem 68AP
The distance
Explanation of Solution
Given information: The mass of car is
The expression for the distance
Substitute
Conclusion:
Therefore, the distance
(e)
The integral values of
(e)

Answer to Problem 68AP
The expression in part (a) is valid only when
Explanation of Solution
Given information: The mass of car is
The expression for the distance
From the above expression, the distance
Conclusion:
Therefore, the expression in part (a) is valid only when
(f)
The explanation for the answer in part (e).
(f)

Answer to Problem 68AP
The mass of the elevator is less than the mass of the counterweight for the value of
Explanation of Solution
Given information: The mass of car is
The expression for the distance
Substitute
Since the value of distance
Conclusion:
Therefore, the mass of the elevator is less than the mass of the counterweight for the value of
(g)
The value of
(g)

Answer to Problem 68AP
The value of
Explanation of Solution
Given information: The mass of car is
The expression for the distance
Rearrange the above equation.
Substitute
Since the value of distance
Conclusion:
Therefore, the value of
Want to see more full solutions like this?
Chapter 10 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
- need help part a and barrow_forwardComplete the table below for spherical mirrors indicate if it is convex or concave. Draw the ray diagrams S1 10 30 S1' -20 20 f 15 -5 Marrow_forwardA particle with a charge of − 5.20 nC is moving in a uniform magnetic field of (B→=−( 1.22 T )k^. The magnetic force on the particle is measured to be(F→=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the scalar product v→F→. Work the problem out symbolically first, then plug in numbers after you've simplified the symbolic expression.arrow_forward
- Need help wity equilibrium qestionarrow_forwardneed answer asap please thanks youarrow_forwardA man slides two boxes up a slope. The two boxes A and B have a mass of 75 kg and 50 kg, respectively. (a) Draw the free body diagram (FBD) of the two crates. (b) Determine the tension in the cable that the man must exert to cause imminent movement from rest of the two boxes. Static friction coefficient USA = 0.25 HSB = 0.35 Kinetic friction coefficient HkA = 0.20 HkB = 0.25 M₁ = 75 kg MB = 50 kg P 35° Figure 3 B 200arrow_forward
- A golf ball is struck with a velocity of 20 m/s at point A as shown below (Figure 4). (a) Determine the distance "d" and the time of flight from A to B; (b) Determine the magnitude and the direction of the speed at which the ball strikes the ground at B. 10° V₁ = 20m/s 35º Figure 4 d Barrow_forwardThe rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. Find the direction of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane.arrow_forwardA particle with a charge of − 5.20 nC is moving in a uniform magnetic field of (B→=−( 1.22 T )k^. The magnetic force on the particle is measured to be (F→=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the y and z component of the velocity of the particle.arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill





