Concept explainers
(a)
The rotational kinetic energy.
(a)
Answer to Problem 54P
The rotational kinetic energy for the system is
Explanation of Solution
Redraw the figure P10.54.
Consider that the vertically standing to be initial position and horizontal to be the final position.
Write the equation for conservation of energy.
Here,
From the law of conservation of energy, gain in rotational kinetic energy equals to loss in gravitational potential energy for the given system.
Write the expression for rotational kinetic energy.
Here,
Write the expression for loss in gravitational potential energy for sphere.
Here,
Write the expression for loss in gravitational potential energy for rod.
Here,
Substitute
Conclusion:
Substitute
Thus, the rotational kinetic energy for the system is
(b)
The angular speed of the rod and ball.
(b)
Answer to Problem 54P
The angular speed of the ball and the rod is
Explanation of Solution
Write the expression for moment of inertia of sphere at center.
Here,
Write the expression for the parallel axis theorem for moment of inertia at point
Here,
Substitute
Write the expression for moment of inertia of rod at point
Here,
Write the expression for net moment of inertia for the whole system.
Here,
Substitute
Write the expression for rotational kinetic energy.
Here,
Simply the above equation for value of
Conclusion:
Substitute
Substitute
Thus, the angular speed of the ball and the rod is
(c)
Thelinear speed of the center of mass of the ball.
(c)
Answer to Problem 54P
The linear speed of the ball of center of mass is
Explanation of Solution
Write the expression for linear speed of the ball.
Here,
Substitute
Here,
Conclusion:
Substitute
Thus, the linear speed of the ball of center of mass is
(d)
Compare the speed with the speed had the ball fallen freelythrough the same distance of
(d)
Answer to Problem 54P
The rod pulls the sphere down together while rotating by the speed factor
Explanation of Solution
Loss in gravitational potential energy will be equal to gain in kinetic energy.
Write the expression for the conservation of energy.
Write the expression for loss in gravitational potential energy for sphere.
Here,
Write the expression for gain kinetic energy.
Here,
Substitute
Write the expression for the ratio of new speed to the original speed.
Here,
Conclusion:
Substitute
Substitute
Thus, the rod pulls the sphere down together while rotating by more speed than in direct falling by the factor of
Want to see more full solutions like this?
Chapter 10 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
- Please help with this physics problemarrow_forwardPlease help me with this physics problemarrow_forwardIn a scene from The Avengers (the first one) Black Widow is boosted directly upwards by Captain America, where she then grabs on to a Chitauri speeder that is 15.0 feet above her and hangs on. She is in the air for 1.04 s. A) With what initial velocity was Black Widow launched? 1 m = 3.28 ft B) What was Black Widow’s velocity just before she grabbed the speeder? Assume upwards is the positive direction.arrow_forward
- In Dark Souls 3 you can kill the Ancient Wyvern by dropping on its head from above it. Let’s say you jump off the ledge with an initial velocity of 3.86 mph and spend 1.72 s in the air before hitting the wyvern’s head. Assume the gravity is the same as that of Earth and upwards is the positive direction. Also, 1 mile = 1609 m. A) How high up is the the ledge you jumped from as measured from the wyvern’s head? B) What is your velocity when you hit the wyvern?arrow_forwardA) If Yoshi flings himself downwards at 9.76 miles per hour to hit an enemy 10.5 m below him, how fast is Yoshi traveling when he hits the enemy? 1 mile = 1609 marrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvote Alreadyarrow_forwardTwo objects get pushed by the same magnitude of force. One object is 10x more massive. How does the rate of change of momentum for the more massive object compare with the less massive one? Please be able to explain why in terms of a quantitative statement found in the chapter.arrow_forward
- A box is dropped on a level conveyor belt that is moving at 4.5 m/s in the +x direction in a shipping facility. The box/belt friction coefficient is 0.15. For what duration will the box slide on the belt? In which direction does the friction force act on the box? How far will the box have moved horizontally by the time it stops sliding along the belt?arrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning