Inquiry into Physics
Inquiry into Physics
8th Edition
ISBN: 9781337515863
Author: Ostdiek
Publisher: Cengage
bartleby

Concept explainers

Question
Book Icon
Chapter 10, Problem 4C
To determine

Number of photons emitted each second by a 100 W light bulb?

Blurred answer
Students have asked these similar questions
Photons released by nuclear decays tend to be in the MeV range, and atomic nuclei are a few femtometers (10-15 m) across. If a single proton trapped in an inescapable rectangular box releases a 1.3 MeV photon when dropping from the n = 2 to the n = 1 state, how wide is the box, in femtometers? You should find that this quick and dirty estimate is remarkably close to the real size of a nucleus! The proton mass is about 1.7 x 10-27 kg. 1 MeV = 1.6 x 10-13 J. Planck's constant is approximately h = 6.6 x 10-34 J s.
1 (a) Show that the entropy per photon in blackbody radiation is independent of the temperature, and in d spatial dimensions is given by En-d-1 s = (d + 1) n=1 E n-d n=1 (b) Show that the answer would have been d + 1 if the photons obeyed Boltzman statistics.
You are asked to design a spectral filter that practically removes 99.0% of the low energy photons in an X-ray beam. Such photons contribute to the patient dose without contributing to the image and are defined as no more than 1% of these photons making it to the other side of the patient. Assume a patient can be modelled as a 20cm thick homogenous object with linear attenuation coefficients as shown below in Table 1. What is the thickness of the filter needed to eliminate all the energies which satisfy the above requirement? Filter linear attenuation properties are given below in Table 2. Table 1: Linear attenuation coefficients vs. energy of patient equivalent material Energy [keV] Habject (mm| 20 0.02601 30 0.02407 40 0.02303 50 60 0.02151 0.02013 Table 2: Linear attenuation coefficients vs. energy of filter material 60 0.06684 20 Energy (keV] Hrter (mm 30 40 50 70 0.1225 0.1067 0.0872 0.07541 0.06327

Chapter 10 Solutions

Inquiry into Physics

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning