Concept explainers
To explain:
The size of Bohr orbits for a “muonic” hydrogen atom is much smaller than the corresponding Bohr orbits of an ordinary hydrogen atom.
To compare:
The energy levels of muonic hydrogen atom with the ordinary hydrogen atom.
To find:
The difference in
Answer to Problem 2C
Bohr orbits for a “muonic” hydrogen atom is much smaller than the corresponding Bohr orbits of an ordinary hydrogen atom.
For muonic hydrogen atom the energy levels are given by
The emission energy of the muonic hydrogen atom will increase by a factor of 200 as compared to the ordinary hydrogen atom
Explanation of Solution
Given:
The mass of muon is 200 times larger than the electron.
Formula used:
The radius of the Bohr orbit is given by
Calculation:
According to de Broglie’s wave hypothesis the wavelength of the orbiting electron can be given as
where p is the momentum of the electron.
Circumference of the orbit is given by
Substituting equation (1.1) in equation (1.2) we can write
So, from equation (1.3) we see that radius of the Bohr orbit is inversely proportional to the mass of the electron.
Since, the mass of the muon (
So, using equation (1.3) and (1.4) we can see that for muonic hydrogen atom the radius of Bohr orbit is smaller compared to ordinary hydrogen atom.
For muonic hydrogen atom the energy levels are given by
According to Bohr orbital theory the energy of an electron in nth orbit is given by
Where
So for muonic hydrogen atom as
For ordinary Hydrogen atom the emission energy is given by
where
Now for muonic hydrogen atom the emission energy can be given by
Conclusion:
Bohr orbits for a ‘muonic’ hydrogen atom is much smaller than the corresponding Bohr orbits of an ordinary hydrogen atom
For muonic hydrogen atom the energy levels are given by
The emission energy of the muonic hydrogen atom will increase by a factor of 200 as compared to the ordinary hydrogen atom.
Want to see more full solutions like this?
Chapter 10 Solutions
Inquiry into Physics
- The minimum amount of energy required to energize a particle from its ground state to first excited state is 1*10^4 eV. One photon source P1 corresponding to X ray wavelength 1nm and another photon source p2 corresponding to visible light wavelength 500 nm are available. As a physicist, which one of these photons would you choose for energizing the atom?Draw a neat diagram to show the procedure and show your calculations in detail.arrow_forwardA hydrogen atom emits a photon of wavelength 97.41 nm. Based on the Bohr model of the hydrogen atom, what energy level transition does this correspond to? In other words, identify the initial and final values of n. Enter integers for your answers. n₂ = nf =arrow_forward4. In Section 1.3 we used dimensional analysis to show that the size of a hydrogen atom can be understood by assuming that the electron in the atom is wave-like and non-relativistic. In this problem we show that, if we assume the electron in the atom is a classical electron described by the theory of relativity, dimensional analysis gives an atomic size which is four orders of magnitude too small. Consider a relativistic, classical theory of an electron moving in the Coulomb potential of a proton. Such a theory only involves three physical constants: m, /4mc9, and e, the maximum velocity in relativity. Show that it is possible to construct a length from these three physical constants, but show that it too small to characterize the size of the atom.arrow_forward
- The following diagram shows the complete set of orbitals of a hypothetical atom. The yellow circle represents the nucleus. Point D represents a location beyond the orbitals of this particular atom. Which of the following statements about an electron transitioning among the labeled points is TRUE? с D An electron transitioning from orbital A to orbital B will emit or absorb light with a longer wavelength than an electron transitioning from orbital B to orbital A. O The energy difference between orbitals B and C is bigger than that between orbitals A and B. To transition to a point between orbital A and B, an electron would need to absorb less energy than the difference between the energies of orbital A and B. An electron transitioning from orbital B orbital C would absorb green light. To transition from orbital C to orbital B, an electron must emit light.arrow_forwardPlease answer the question for me. I'm begging ?.arrow_forwardImagine an alternate universe where the value of the Planck constant is 6.62607x10−36J·s. In that universe, which of the following objects would require quantum mechanics to describe, that is, would show both particle and wave properties? Which objects would act like everyday objects, and be adequately described by classical mechanics? A mosquito with a mass of 1.1 mg, 8.7 mm long, moving at 2.7 m/s. A buckyball with a mass of 1.2 x 10-21 g, 0.7 nm wide, moving at 23. m/s. An iceberg with a mass of 3.4 x 108 kg, 160. m wide, moving at 1.21 km/h. An eyelash mite with a mass of 8.3 µg, 370 µm wide, moving at 27. µm/s.arrow_forward
- Please don't provide handwritten solution...arrow_forwardUnexcited hydrogen atoms are bombarded with electrons that have been accelerated through 12.5 V. What is the highest energy level that the hydrogen atoms will be excited to? When the electron of the hydrogen atom is excited into the level in part a), what wavelength(s) is (are) possible for the photon emitted when the electron drops to a lower energy level? [Answer in 3 significant figures] a) b)arrow_forwardTwo or more of your answers are incorrect. Imagine an alternate universe where the value of the Planck constant is 6.62607 × 10³ J's. In that universe, which of the following objects would require quantum mechanics to describe, that is, would show both particle and wa objects would act like everyday objects, and be adequately described by classical mechanics? object quantum or classical? A bacterium with a mass of 4.0 pg, 6.0 μm long, moving at 7.00 µm/s. O classical A raindrop with a mass of 26.0 mg, 2.4 mm wide, moving at 6.7 m/s. A paper airplane with a mass of 4.0 g, 205. mm long, moving at 2.0 m/s. A human with a mass of 57. kg, 1.7 m high, moving at 2.6 m/s. quantum classical O quantum classical O quantum classical O quantumarrow_forward
- An alpha particle is made up of two neutrons and two protons in a bound state. Consider a stationary alpha particle a distance d=5.5nm from a neutral hydrogen atom. 1. What is the force between the alpha particle and the hydrogen atom? 2. What is the strength of the force between the alpha particle and the hydrogen atom? 3. The energy needed to ionize the hydrogen atom is U=2.179x10^-18J. What is the closest the hydrogen atom can get to the alpha particle?arrow_forwardI am struggling with getting this question done and need some help solving it, explain and make sure the answer is 100% correct. When a fast electron (i.e., one moving at a relativistic speed) passes by a heavy atom, it interacts with the atom's electric field. As a result, the electron's kinetic energy is reduced; the electron slows down. In the meantime, a photon of light is emitted. The kinetic energy lost by the electron equals the energy Eγ�� of a photon of radiated light: Eγ=K−K′��=�−�′, where K� and K′�′ are the kinetic energies of the electron before and after radiation, respectively. This kind of radiation is called bremsstrahlung radiation, which in German means "braking radiation" or "deceleration radiation." The highest energy of a radiated photon corresponds to the moment when the electron is completely stopped. Part A. Given an electron beam whose electrons have kinetic energy of 4.00 keVkeV , what is the minimum wavelength λmin�min of light radiated by such beam…arrow_forwardImagine an alternate universe where the value of the Planck constant is 6.62607x10−17J·s. In that universe, which of the following objects would require quantum mechanics to describe, that is, would show both particle and wave properties? Which objects would act like everyday objects, and be adequately described by classical mechanics? A bacterium with a mass of 9.0 pg, 6.0 µm long, moving at 9.00 µm/s. A mosquito with a mass of 2.3 mg, 6.0 mm long, moving at 3.0 m/s. A paper airplane with a mass of 5.9 g, 295. mm long, moving at 3.7 m/s. A car with a mass of 2000. kg, 4.4 m long, moving at 81.0 km/h.arrow_forward
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill