It can be shown in the accompanying figure that hanging cables form parabolic arcs rather than catenaries if they are subjected to uniformly distributed downward forces along their length. For example, if the weight of the roadway in a suspension bridge is assumed to be uniformly distributed along the supporting cables, then the cables can be modeled by parabolas. (a) Assuming a parabolic model, find an equation for the cable in the accompanying figure, taking the y -axis to be vertical and the origin at the low point of the cable. (b) Find the length of the cable between the supports.
It can be shown in the accompanying figure that hanging cables form parabolic arcs rather than catenaries if they are subjected to uniformly distributed downward forces along their length. For example, if the weight of the roadway in a suspension bridge is assumed to be uniformly distributed along the supporting cables, then the cables can be modeled by parabolas. (a) Assuming a parabolic model, find an equation for the cable in the accompanying figure, taking the y -axis to be vertical and the origin at the low point of the cable. (b) Find the length of the cable between the supports.
It can be shown in the accompanying figure that hanging cables form parabolic arcs rather than catenaries if they are subjected to uniformly distributed downward forces along their length. For example, if the weight of the roadway in a suspension bridge is assumed to be uniformly distributed along the supporting cables, then the cables can be modeled by parabolas.
(a) Assuming a parabolic model, find an equation for the cable in the accompanying figure, taking the y-axis to be vertical and the origin at the low point of the cable.
(b) Find the length of the cable between the supports.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY