If f ′ t and g ′ t are continuous functions, and if no segment of the curve x = f t , y = g t a ≤ t ≤ b is traced more than once, then it can be shown that the area of the surface generated by revolving this curve about the x -axis is S = ∫ a b 2 π y d x d t 2 + d y d t 2 d t and the area of the surface generated by revolving the curve about the y -axis is S = ∫ a b 2 π x d x d t 2 + d y d t 2 d t [The derivations are similar to those used to obtain Formulas (4) and (5) in Section 6.5.] Use the formulas above in these exercises. By revolving the semicircle x = r cos t , y = r sin t 0 ≤ t ≤ π about the x -axis, show that the surface area of a sphere of radius r is 4 π r 2 .
If f ′ t and g ′ t are continuous functions, and if no segment of the curve x = f t , y = g t a ≤ t ≤ b is traced more than once, then it can be shown that the area of the surface generated by revolving this curve about the x -axis is S = ∫ a b 2 π y d x d t 2 + d y d t 2 d t and the area of the surface generated by revolving the curve about the y -axis is S = ∫ a b 2 π x d x d t 2 + d y d t 2 d t [The derivations are similar to those used to obtain Formulas (4) and (5) in Section 6.5.] Use the formulas above in these exercises. By revolving the semicircle x = r cos t , y = r sin t 0 ≤ t ≤ π about the x -axis, show that the surface area of a sphere of radius r is 4 π r 2 .
If
f
′
t
and
g
′
t
are continuous functions, and if no segment of the curve
x
=
f
t
,
y
=
g
t
a
≤
t
≤
b
is traced more than once, then it can be shown that the area of the surface generated by revolving this curve about the x-axis is
S
=
∫
a
b
2
π
y
d
x
d
t
2
+
d
y
d
t
2
d
t
and the area of the surface generated by revolving the curve about the y-axis is
S
=
∫
a
b
2
π
x
d
x
d
t
2
+
d
y
d
t
2
d
t
[The derivations are similar to those used to obtain Formulas (4) and (5) in Section 6.5.] Use the formulas above in these exercises.
By revolving the semicircle
x
=
r
cos
t
,
y
=
r
sin
t
0
≤
t
≤
π
about the x-axis, show that the surface area of a sphere of radius r is
4
π
r
2
.
A tank holds a 135 gal solution of water and salt. Initially, the solution contains 21 lb of salt. A salt solution with a concentration of 3 lb of salt per gal begins flowing into the tank at the rate of 3 gal per
minute. The solution in the tank also begins flowing out at a rate of 3 gal per minute. Let y be the amount of salt present in the tank at time t.
(a) Find an expression for the amount of salt in the tank at any time.
(b) How much salt is present after 51 minutes?
(c) As time increases, what happens to the salt concentration?
Solve please and thanks!
Solve please and thanks!
Chapter 10 Solutions
Calculus Early Transcendentals, Binder Ready Version
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Compound Interest Formula Explained, Investment, Monthly & Continuously, Word Problems, Algebra; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=P182Abv3fOk;License: Standard YouTube License, CC-BY
Applications of Algebra (Digit, Age, Work, Clock, Mixture and Rate Problems); Author: EngineerProf PH;https://www.youtube.com/watch?v=Y8aJ_wYCS2g;License: Standard YouTube License, CC-BY