Chemistry In Focus
6th Edition
ISBN: 9781305084476
Author: Tro, Nivaldo J., Neu, Don.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 10, Problem 26E
Interpretation Introduction
Interpretation:
The percent efficiency of the given PVcell is to be calculated.
Concept Introduction:
The percent of the input power that is converted into the output power by a PV cell is called its efficiency.
Percent efficiency of a PVcell is 100 multiplied by the ratio of power out and power in.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider a cloudless day on which the sun shines down across the United States. If 2159 kJ2159 kJ of energy reaches a square meter (m2)(m2) of the United States in one hour, how much total solar energy reaches the entire United States per hour? The entire area of the United States is 9,158,960 km29,158,960 km2.
3. Which of the following statements is an argument against using
renewable energy?
O They will run out
O They produce pollution
O You only need a small amount to produce a lot of energy
O The technology needed is expensive
Consider two coal-fired power plants that generate 5 x 1012 J of electricity daily. Plant A has
an overall net efficiency of 38%. Plant B, a proposed replacement, would operate at higher
temperatures with an overall net efficiency of 46%. The grade of coal used releases 30 kJ of heat
per gram. Assume that coal is pure carbon. a. If 1000 kg of coal costs $30, what is the difference in
daily fuel costs for the two plants? b. How many fewer grams of CO2 are emitted daily by Plant B,
assuming complete combustion?
Chapter 10 Solutions
Chemistry In Focus
Ch. 10 - Prob. 10.1YTCh. 10 - Prob. 10.2YTCh. 10 - Prob. 1SCCh. 10 - Prob. 1ECh. 10 - Explain why hydroelectric power and wind power are...Ch. 10 - Prob. 3ECh. 10 - Prob. 4ECh. 10 - Prob. 5ECh. 10 - Prob. 6ECh. 10 - Prob. 7E
Ch. 10 - Prob. 8ECh. 10 - Prob. 9ECh. 10 - Prob. 10ECh. 10 - Prob. 11ECh. 10 - Prob. 12ECh. 10 - Prob. 13ECh. 10 - Prob. 14ECh. 10 - Prob. 15ECh. 10 - How does a geothermal power plant generate...Ch. 10 - Prob. 17ECh. 10 - Prob. 18ECh. 10 - Prob. 19ECh. 10 - Prob. 20ECh. 10 - Prob. 21ECh. 10 - Prob. 22ECh. 10 - Prob. 23ECh. 10 - Prob. 24ECh. 10 - Prob. 25ECh. 10 - Prob. 26ECh. 10 - Prob. 27ECh. 10 - Prob. 28ECh. 10 - Prob. 29ECh. 10 - Prob. 30ECh. 10 - Prob. 31ECh. 10 - Prob. 32ECh. 10 - Prob. 33ECh. 10 - Prob. 34ECh. 10 - Prob. 35ECh. 10 - Prob. 36ECh. 10 - Prob. 37ECh. 10 - Prob. 38ECh. 10 - Prob. 42ECh. 10 - Prob. 43E
Knowledge Booster
Similar questions
- The best solar panels currently available are about 15% efficient in converting sunlight to electricity. A typical home will use about 40. kWh of electricity per day (1 kWh = 1 kilowatt hour; 1kW = 1000 J/s). Assuming 8.0 hours of useful sunlight per day, calculate the minimum solar panel surface area necessary to provide all of a typical homes electricity. (See Exercise 124 for the energy rate supplied by the sun.)arrow_forwardDefine the terms renewable and nonrenewable as applied to energy resources. Which of the following energy resources are renewable: solar energy, coal, natural gas, geothermal energy, wind power?arrow_forwardAssume that electricity costs 15 cents per kilowatt- hour. Calculate the monthly cost of operating each of the following: a 100 W light bulb, 5 h/day a 600 W refrigerator, 24 h/day a 12,000 W electric range, 1 h/day a 1000 W toaster, 10 min/dayarrow_forward
- 9.70 Residential electric service in the United States generally operates at 120 V, but transmission substations feed power onto the grid at 110 kV or higher. What advantage is realized by transmitting electricity at such a high voltage?arrow_forwardPetroleum is a very valuable raw material for the synthesis of polymers. What if Congress decided that petroleum must be conserved as a raw material and could not be used as fuel? What could our society do for alternate sources of energy?arrow_forwardA number of companies currently lease solar panels to homeowners to offset the home’s energy use. The total energy production of a certain residential solar system in suburban Maryland was 7581.62 kWh over the last calendar year. What mass of carbon dioxide did this solar system keep out of the atmosphere during that time, assuming that the energy consumed by this home would otherwise have been supplied solely by coal-burning power plants (note that this isn’t a great assumption, as Maryland also has a nuclear power plant, solar and wind farms, and Montgomery County incinerates waste to generate electricity)? Keep in mind that power plants are inefficient, and are able to convert on average 33% of the heat generated by the combustion of coal into electricity. Assume that coal can be approximated as C(s) (again, not a great assumption, but sufficient for this problem). Use the following data to find the heat of combustion of coal: 2 C(s) + O2(g) --> 2 CO(g)…arrow_forward
- A number of companies currently lease solar panels to homeowners to offset the home’s energy use. The total energy production of a certain residential solar system in suburban Maryland was 7581.62 kWh over the last calendar year. What mass of carbon dioxide did this solar system keep out of the atmosphere during that time, assuming that the energy consumed by this home would otherwise have been supplied solely by coal-burning power plants (note that this isn’t a great assumption, as Maryland also has a nuclear power plant, solar and wind farms, and Montgomery County incinerates waste to generate electricity)? Keep in mind that power plants are inefficient, and are able to convert on average 33% of the heat generated by the combustion of coal into electricity. Assume that coal can be approximated as C(s) (again, not a great assumption, but sufficient for this problem). Use the following data to find the heat of combustion of coal: 2 C(s) + O2(g) ----> 2 CO(g).…arrow_forwardA number of companies currently lease solar panels to homeowners to offset the home’s energy use. The total energy production of a certain residential solar system in suburban Maryland was 7581.62 kWh over the last calendar year. What mass of carbon dioxide did this solar system keep out of the atmosphere during that time, assuming that the energy consumed by this home would otherwise have been supplied solely by coal-burning power plants (note that this isn’t a great assumption, as Maryland also has a nuclear power plant, solar and wind farms, and Montgomery County incinerates waste to generate electricity)? Keep in mind that power plants are inefficient, and are able to convert on average 33% of the heat generated by the combustion of coal into electricity. Assume that coal can be approximated as C(s) (again, not a great assumption, but sufficient for this problem). Use the following data to find the heat of combustion of coal: 2 C(s) + O2(g) --> 2 CO(g)…arrow_forwardIn Table 7.2 (Energy Expenditure of a 180-Pound Person During Selected Exercises)Links to an external site. in the course textbook, it is claimed that a person climbing stairs expends about 1200 kcal/hr. The maximum human power output for short-term effort is approximately 1200 W (remember 1 W = 1 J/s). Is the value of 1200 kcal/hr a reasonable estimate of average power output by a person climbing stairs? Note: Power is defined as energy per time, so 1200 kcal/hr has units of energy per time. A watt is the SI unit of power and has units of J/s. So to approach this problem you will need to convert one power measurement into the other. Group of answer choices It comes out to be 1400 W, which is too high It is impossible to convert kcals into joules since one is an SI unit and the other isn't It comes out to be 1.395 x 103 W, so the value in the table seems reasonable It comes out to be 960 W, that is too high It comes out to be 1.4 W and that is too lowarrow_forward
- Coal-fired power plants emit CO2, which is one of the gases that is of concern with regard to global warming. A technique that power plants can adopt to keep most of the CO2 from entering the air is called CO2 capture and storage (CCS). If the incremental cost of the sequestration process is $0.019 per kilowatt-hour, what is the present worth of the extra cost over a 3-year period to a manufacturing plant that uses 100,000 kWh of power per month? The interest rate is 12% per year compounded quarterly.arrow_forwardConsider a cloudless day on which the sun shines down across the United States. If 2247 kJ of energy reaches a square meter (m2) of the United States in one hour, how much total solar energy reaches the entire United States per hour? The entire area of the United States is 9,158,960 km². kJ/h solar energy per hour:arrow_forwardElectrical power is commonly measured in watts (W) or in kilowatts (kW). A commercial solar panel generates about 0.10 watts per square inch of surface area. Based on this, how many kilowatts of power could be generated by a residential solar panel array with a surface area of 621 ft2? amount of power: kWarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co