Interpretation:
The percent efficiency of the tower is to be calculated.
Concept Introduction:
Hundreds of sun-tracking mirrors, called heliostats, form a tower.
The percent efficiency of heliostats is given by:
Answer to Problem 10.1YT
Solution:
Explanation of Solution
Since the total power produced is
The conversion of kW into W is as follows:
Since the total number of heliostats is
Hence, the active area is
The solar energy falls on the active area at the rate of
Therefore, the input power is
The percent efficiency of heliostats is calculated as follows:
Substitute
The tower gives a percent efficiency of
Want to see more full solutions like this?
Chapter 10 Solutions
Chemistry In Focus
- The best solar panels currently available are about 15% efficient in converting sunlight to electricity. A typical home will use about 40. kWh of electricity per day (1 kWh = 1 kilowatt hour; 1kW = 1000 J/s). Assuming 8.0 hours of useful sunlight per day, calculate the minimum solar panel surface area necessary to provide all of a typical homes electricity. (See Exercise 124 for the energy rate supplied by the sun.)arrow_forwardSome solar-heated homes use large beds of rocks to store heat. (a) How much heat is absorbed by 100.0 kg of rocks if their temperature increases by 12C? (Assume that c=0.82J/gC.) (b) Assume that the rock pile has total surface area 2 m2. At maximum intensity near the earth's surface, solar power is about 170 watts/m2. (1watt=1J/s.) How many minutes will it take for solar power to produce the 12C increase in part (a)?arrow_forwardDefine the terms renewable and nonrenewable as applied to energy resources. Which of the following energy resources are renewable: solar energy, coal, natural gas, geothermal energy, wind power?arrow_forward
- Calculating Energy Use in Kilowatt-Hours What is the yearly cost of operating a 100-W television for 2 hours per day, assuming the cost of electricity is 15 cents per kilowatt-hour?arrow_forwardExplain why oceanfront areas generally have smaller temperature fluctuations than inland areas.arrow_forwardAssume that electricity costs 15 cents per kilowatt- hour. Calculate the monthly cost of operating each of the following: a 100 W light bulb, 5 h/day a 600 W refrigerator, 24 h/day a 12,000 W electric range, 1 h/day a 1000 W toaster, 10 min/dayarrow_forward
- A number of companies currently lease solar panels to homeowners to offset the home’s energy use. The total energy production of a certain residential solar system in suburban Maryland was 7581.62 kWh over the last calendar year. What mass of carbon dioxide did this solar system keep out of the atmosphere during that time, assuming that the energy consumed by this home would otherwise have been supplied solely by coal-burning power plants (note that this isn’t a great assumption, as Maryland also has a nuclear power plant, solar and wind farms, and Montgomery County incinerates waste to generate electricity)? Keep in mind that power plants are inefficient, and are able to convert on average 33% of the heat generated by the combustion of coal into electricity. Assume that coal can be approximated as C(s) (again, not a great assumption, but sufficient for this problem). Use the following data to find the heat of combustion of coal: 2 C(s) + O2(g) --> 2 CO(g)…arrow_forwardA number of companies currently lease solar panels to homeowners to offset the home’s energy use. The total energy production of a certain residential solar system in suburban Maryland was 7581.62 kWh over the last calendar year. What mass of carbon dioxide did this solar system keep out of the atmosphere during that time, assuming that the energy consumed by this home would otherwise have been supplied solely by coal-burning power plants (note that this isn’t a great assumption, as Maryland also has a nuclear power plant, solar and wind farms, and Montgomery County incinerates waste to generate electricity)? Keep in mind that power plants are inefficient, and are able to convert on average 33% of the heat generated by the combustion of coal into electricity. Assume that coal can be approximated as C(s) (again, not a great assumption, but sufficient for this problem). Use the following data to find the heat of combustion of coal: 2 C(s) + O2(g) ----> 2 CO(g).…arrow_forwardA number of companies currently lease solar panels to homeowners to offset the home’s energy use. The total energy production of a certain residential solar system in suburban Maryland was 7581.62 kWh over the last calendar year. What mass of carbon dioxide did this solar system keep out of the atmosphere during that time, assuming that the energy consumed by this home would otherwise have been supplied solely by coal-burning power plants (note that this isn’t a great assumption, as Maryland also has a nuclear power plant, solar and wind farms, and Montgomery County incinerates waste to generate electricity)? Keep in mind that power plants are inefficient, and are able to convert on average 33% of the heat generated by the combustion of coal into electricity. Assume that coal can be approximated as C(s) (again, not a great assumption, but sufficient for this problem). Use the following data to find the heat of combustion of coal: 2 C(s) + O2(g) --> 2 CO(g)…arrow_forward
- Much of the U.S. electricity is generated in thermal generating stations that burn fossil fuels such as coal and natural gas. The use of solar-powered generating stations is expected to increase over the next decade and replace older fossil-fuel generating stations. What impact might this change have on greenhouse gas emissions?arrow_forward3. Which of the following statements is an argument against using renewable energy? O They will run out O They produce pollution O You only need a small amount to produce a lot of energy O The technology needed is expensivearrow_forwardCoal-fired power plants emit CO2, which is one of the gases that is of concern with regard to global warming. A technique that power plants can adopt to keep most of the CO2 from entering the air is called CO2 capture and storage (CCS). If the incremental cost of the sequestration process is $0.019 per kilowatt-hour, what is the present worth of the extra cost over a 3-year period to a manufacturing plant that uses 100,000 kWh of power per month? The interest rate is 12% per year compounded quarterly.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning